Subscribe to Nanoparticles
View Sample

FREE Email Newsletter

Scientists image nanoparticles in action

April 25, 2013 8:49 am | News | Comments

The macroscopic effects of certain nanoparticles on human health have long been clear to the naked eye. What scientists have lacked is the ability to see the detailed movements of individual particles that give rise to those effects. Scientists at Virginia Tech have invented a technique for imaging nanoparticle dynamics with atomic resolution as these dynamics occur in a liquid environment.

A Close Eye on Nanotechnology

April 24, 2013 12:30 pm | by Lindsay Hock | Articles | Comments

Nanotechnology typically describes any material, device, or technology where feature sizes are smaller than 100 nanometers in dimension. However, this new and uncharted direction in research provides a large spark for new product and drug delivery development. To achieve these discoveries, scientists must rely on specialized instruments and materials to drive their experiments and analysis.

A greener method for making popular nanoparticle

April 24, 2013 10:37 am | News | Comments

Already renowned for its beneficial effects on human health, green tea could have a new role—along with other natural plant-based substances—in a healthier, more sustainable production of silver nanoparticles. According to a recent study, extracts from green tea and other plants could be used as substitutes for toxic materials normally used to make these popular nanoparticles.


Nanoparticle probes could drastically drop cost of two-photon microscopy

April 22, 2013 11:09 am | News | Comments

A dye-based imaging technique known as two-photon microscopy can produce pictures of active neural structures in much finer detail than functional magnetic resonance imaging, but it requires expensive femtosecond lasers to fluoresce existing dyes. A research team at the University of Pennsylvania has developed a new kind dye that fluoresces easily and produces quality images with far less powerful lasers.

Scientists see nanoparticles form larger structure in real time

April 22, 2013 7:57 am | News | Comments

In a new study performed at Argonne National Laboratory, researchers have, for the first time, seen the self-assembly of nanoparticle chains in situ, that is, in place as it occurs in real time. The scientists exposed a tiny liquid “cell” or pouch that contained gold nanoparticles covered with a positively charged coating to an intense beam of electrons generated with a transmission electron microscope.

Study: Nanosilver from consumer products quickly breaks down in water

April 18, 2013 10:07 am | News | Comments

Nanosilver in wastewater can cause severe environmental damage if it occurs as a metal. A study recently conducted in Switzerland. now shows that nanosilver is quickly transformed into less problematic substances on its way to the wastewater treatment plant. In addition, it is efficiently retained in the sewage sludge so that only a small portion of it reaches the water systems.

Black nanoparticles could play key role in clean energy photocatalysis

April 15, 2013 8:32 am | News | Comments

A unique atomic-scale engineering technique for turning low-efficiency photocatalytic “white” nanoparticles of titanium dioxide into high-efficiency “black” nanoparticles could be the key to clean energy technologies based on hydrogen. Samuel Mao leads the development of a technique for engineering disorder into the nanocrystalline structure of the semiconductor titanium dioxide.

GUMBOS technology promises new drugs, electronic devices

April 10, 2013 1:06 pm | News | Comments

Mention a breakthrough involving "gumbo" technology in this city, and people think of a new twist on The Local Dish, the stew that's the quintessence of southern Louisiana cooking. But scientific presentations at a meeting of the world's largest scientific society this week are focusing on what may be an advance in developing GUMBOS-based materials with far-reaching medical, electronic and other uses.


Tin nanocrystals for the battery of the future

April 9, 2013 6:17 pm | by Fabio Bergamin, ETH Zurich | News | Comments

More powerful batteries could help electric cars achieve a considerably larger range and thus a breakthrough on the market. A new nanomaterial made from tiny tin crystals, deployed at the anode of lithium-ion batteries, has been developed in the labs of chemists in Europe and enables considerably more power to be stored in these batteries.

Light may recast copper as chemical industry "holy grail"

March 29, 2013 8:50 am | News | Comments

Wouldn't it be convenient if you could reverse the rusting of your car by shining a bright light on it? It turns out that this concept works for undoing oxidation on copper nanoparticles, and it could lead to an environmentally friendly production process for an important industrial chemical, University of Michigan engineers have discovered.

Imaging in 3D reveals never-before-seen defects in platinum nanoparticle

March 28, 2013 12:49 am | News | Comments

A team of scientists in the United States has combine three different imaging methods to produce 3D images and videos of a tiny platinum nanoparticle at atomic resolution that reveal new details of defects in nanomaterials that have not been seen before. Prior to this work, scientists only had flat, two-dimensional images with which to view the arrangement of atoms.

Nanoparticles show promise as inexpensive, durable scintillators

March 25, 2013 12:09 pm | News | Comments

A team of researchers has recently shown that nanoparticles smaller than 10 nm can be successfully incorporated into scintillation devices capable of detecting and measuring a wide energy range of X-rays and gamma rays emitted by nuclear materials. The proof-of-concept study suggests that "nanocrystals"—nanoparticles clustered together to mimic the densely-packed crystals traditionally used in scintillation devices—may one day yield better radiation detectors.

Improved colloidal quantum dots to make solar cells more efficient

March 8, 2013 10:04 am | by Terry Lavender, University of Toronto | News | Comments

A research group at the University of Toronto has recently described a new technique to improve efficiency in what are called colloidal quantum dot photovoltaics. The method depends on a characteristic of quantum dots: Their light-absorption spectrum can be changed simply by changing the size of quantum dot. By adjusting this property to the infrared portion of the spectrum, efficiency is improved.


Thermally controlled nanopores may allow detailed blood analysis

March 7, 2013 10:02 am | News | Comments

Tiny biomolecular chambers called nanopores that can be selectively heated may help doctors diagnose disease more effectively if recent research by a team at NIST proves effective. The team has pioneered work on the use of nanopores for the detection and identification of a wide range of molecules, including DNA. These nanopores mimic ion channels, the gateways by which a cell admits and expels materials.

Nanoclusters in steel add strength, stability under irradiated conditions

March 6, 2013 10:35 am | News | Comments

Safely containing and retarding the mobility of reactor fuels are longstanding safety and security concerns. At the Environmental Molecular Sciences Laboratory. Scientists have used various analysis tools, including atom probe tomography (APT), focused ion beam, and accelerator capabilities, to examine complex oxide nanoclusters within oxide dispersion strengthened, or ODS, steels to determine their potential resistance and stability under a range of irradiation conditions.

Traceable nanoparticles may be the next weapon in cancer treatment

March 5, 2013 8:58 am | by Karin Söderlund Leifler and Peter Larsson, KTH Royal Institute of Technology | News | Comments

Therapeutic and diagnostic in function, so-called “theranostic” particles have been developed by a team in Sweden. These small particles can be loaded with medicine and could be a future weapon for cancer treatment. Because the particles can be seen in magnetic resonance images, they are traceable.

Nanodiamonds being perfected for use in biomedical applications

March 4, 2013 8:29 am | News | Comments

Scientists in Australia are perfecting a technique that may help see nanodiamonds used in biomedical applications. They have been processing the raw diamonds so that they might be used as a tag for biological molecules and as a probe for single-molecule interactions. With the help of an international team, these diamonds have recently been optically trapped and manipulated in three dimensions—the first time this has been achieved.

Nanogels offer new way to attack lupus

March 1, 2013 3:22 pm | by Eric Gershon, Yale University | News | Comments

In systemic lupus erythematosus, the body attacks itself for largely mysterious reasons, leading to serious tissue inflammation and organ damage. Current drug treatments address symptoms only and can require life-long daily use at toxic doses. Now, scientists at Yale University have designed and tested a drug delivery system that uses biodegradable nanoparticles to deliver low drug doses. The method shows early promise for improved treatment of lupus and other chronic, uncured autoimmune diseases.

Diagnostic cocktail: Pour, shake and stir

March 1, 2013 10:01 am | News | Comments

A homebrewed diagnostic mixture containing a single drop of blood, a dribble of water, and a dose of DNA powder with gold particles could mean rapid diagnosis and treatment of the world's leading diseases in the near future. The cocktail diagnostic is being developed at the University of Toronto and it involves the same technology used in over-the-counter pregnancy tests.

Team develops trackable drug-filled nanoparticles

March 1, 2013 8:35 am | News | Comments

Many researchers have been investigating the potential of tiny particles filled with drugs to treat cancer. A team of scientists in Sweden have recently made an advance in this area of research by developing “theranostic” nanoparticles, which combine therapy and diagnostics in the same nanomaterial. They are trackable through magnetic resonance.

Shape matters for targeted chemotherapy drugs

February 27, 2013 10:32 pm | News | Comments

Bioengineering researchers at University of California, Santa Barbara have found that changing the shape of chemotherapy drug nanoparticles from spherical to rod-shaped made them up to 10,000 times more effective at specifically targeting and delivering anti-cancer drugs to breast cancer cells. The findings could have a big impact on the effectiveness of anti-cancer therapies and reducing the side effects of chemotherapy

Protein “passport” helps nanoparticles navigate immune system

February 22, 2013 9:10 am | News | Comments

Macrophages—literally, “big eaters”—are a big part of the body’s immune system response. These cells find and engulf invaders, or form a wall around the foreign object. Unfortunately, macrophages also eat helpful foreigners, including nanoparticles. In an effort to clear this long-standing hurdle, researchers at the University of Pennsylvania have developed a “passport” that could be attached to therapeutic particles and devices, tricking macrophages into leaving them alone.

Chemists build titanium dioxide nanoreactor

February 21, 2013 1:31 pm | News | Comments

Tiny particles of titanium dioxide are found as key ingredients in common products such as paint and toothpaste. When reduced to the nanoscale, these particle acquire catalytic ability. A team of chemists has recently developed a synthesis to produce these nanoparticles at room temperature in a polymer network. Their analysis has revealed the crystalline structure of the nanoparticles and is a major step forward in the development of polymeric nanoreactors.

Turning waste heat into electricity on the nanoscale

February 14, 2013 7:50 am | News | Comments

A new type of nanoscale engine has been proposed that would use quantum dots to generate electricity from waste heat, potentially making microcircuits more efficient. The engines would be microscopic in size, and have no moving parts. Each would only produce a tiny amount of power. But by combining millions of the engines in a layered structure, a device that was a square inch in area could produce about a watt of power for every one degree difference in temperature.

Study: Popular drug-carrying nanoparticles get trapped in bloodstream

February 6, 2013 12:05 pm | News | Comments

Many medically minded researchers are in hot pursuit of designs that will allow drug-carrying nanoparticles to navigate tissues and the interiors of cells, but University of Michigan engineers have discovered that these particles have another hurdle to overcome: escaping the bloodstream. According to their work, the immune system can't get rid of some of the promising drug carriers quickly.

You may login with either your assigned username or your e-mail address.
The password field is case sensitive.