Advertisement
Nanoparticles
Subscribe to Nanoparticles
View Sample

FREE Email Newsletter

Nanoparticles for clean drinking water

January 16, 2015 11:47 am | by Univ. of Twente | News | Comments

One way of removing harmful nitrate from drinking water is to catalyze its conversion to nitrogen. This process suffers from the drawback that it often produces ammonia. By using palladium nanoparticles as a catalyst, and by carefully controlling their size, this drawback can be eliminated. It was research conducted by Yingnan Zhao of the Univ. of Twente’s MESA+ Institute for Nanotechnology that led to this discovery.

Gold nanoparticles show promise for early detection of heart attacks

January 15, 2015 12:29 pm | by New York Univ. | News | Comments

New York Univ. Polytechnic School of Engineering professors have been collaborating with researchers from Peking Univ. on a new test strip that is demonstrating great potential for the early detection of certain heart attacks. The new colloidal gold test strip can test for cardiac troponin I (cTn-I) detection.

Controlling the properties of nanomaterials

January 13, 2015 8:43 am | by Katie Bethea, Oak Ridge National Laboratory | News | Comments

Scientists at Oak Ridge National Laboratory are learning how the properties of water molecules on the surface of metal oxides can be used to better control these minerals and use them to make products such as more efficient semiconductors for organic light-emitting diodes and solar cells, safer vehicle glass in fog and frost and more environmentally friendly chemical sensors for industrial applications. 

Advertisement

New approach may lead to inhalable vaccines for influenza, pneumonia

January 8, 2015 9:29 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers at North Carolina State Univ. and the Univ. of North Carolina at Chapel Hill have uncovered a novel approach to creating inhalable vaccines using nanoparticles that shows promise for targeting lung-specific diseases, such as influenza, pneumonia and tuberculosis.

Researchers synthesize lead sulfide nanocrystals of uniform size

January 5, 2015 10:26 am | by Massachusetts Institute of Technology | News | Comments

Lead sulfide nanocrystals suitable for solar cells have a nearly one-to-one ratio of lead to sulfur atoms, but Massachusetts Institute of Technology (MIT) researchers discovered that to make uniformly sized quantum dots, a higher ratio of lead to sulfur precursors—24 to 1—is better.

Gelatin nanoparticles could deliver drugs to the brain

January 2, 2015 8:12 am | by Liz Ahlberg, Physical Sciences Editor, Univ. of Illinois, Urbana-Champaign | News | Comments

Stroke victims could have more time to seek treatment that could reduce harmful effects on the brain, thanks to tiny blobs of gelatin that could deliver the medication to the brain noninvasively. Univ. of Illinois researchers found that gelatin nanoparticles could be laced with medications for delivery to the brain, and that they could extend the treatment window for when a drug could be effective.

Nanotech used to engineer ACL replacements

January 2, 2015 7:50 am | by Amanda Morris, Northwestern Univ. | News | Comments

Lindsey Vonn. Derrick Rose. Tom Brady. Mickey Mantle. They have all fallen victim to the dreaded pop of the knee. Connecting the femur to the tibia, the anterior cruciate ligament (ACL) rupture is one of the most devastating injuries in sports. No other injury has sidelined more athletes for a season or even the rest of a career.

Scientists trace nanoparticles from plants to caterpillars

December 16, 2014 2:37 pm | by Jade Boyd, Rice Univ. | News | Comments

In one of the most comprehensive laboratory studies of its kind, Rice Univ. scientists traced the uptake and accumulation of quantum dot nanoparticles from water to plant roots, plant leaves and leaf-eating caterpillars. The study found that nanoparticle accumulation in both plants and animals varied significantly depending upon the type of surface coating applied to the particles.

Advertisement

Physicists explain puzzling particle collisions

December 11, 2014 8:21 am | News | Comments

An anomaly spotted at the Large Hadron Collider has prompted scientists to reconsider a mathematical description of the underlying physics. By considering two forces that are distinct in everyday life but unified under extreme conditions like those within the collider and just after the birth of the universe, they have simplified one description of the interactions of elementary particles. 

Composite materials can be designed in a supercomputer 'virtual lab'

December 9, 2014 12:45 pm | News | Comments

Scientists have shown how advanced computer simulations can be used to design new composite materials. Nanocomposites, which are widely used in industry, are revolutionary materials in which microscopic particles are dispersed through plastics. 

Nanoparticle allows low-cost creation of 3-D nanostructures

December 8, 2014 7:51 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. have developed a new lithography technique that uses nanoscale spheres to create 3-D structures with biomedical, electronic and photonic applications. The new technique is significantly less expensive than conventional methods and does not rely on stacking 2-D patterns to create 3-D structures.

Atomic “mismatch” creates nano “dumbbells”

December 5, 2014 9:55 am | by Jared Sagoff, Argonne National Laboratory | News | Comments

Like snowflakes, nanoparticles come in a wide variety of shapes and sizes. The geometry of a nanoparticle is often as influential as its chemical makeup in determining how it behaves, from its catalytic properties to its potential as a semiconductor component. Thanks to a new study, researchers are closer to understanding the process by which nanoparticles made of more than one material, called heterostructured nanoparticles, form.

Nanoparticle network could bring fast-charging batteries

December 4, 2014 7:46 am | by Emil Venere, Purdue Univ. | News | Comments

A new electrode design for lithium-ion batteries has been shown to potentially reduce the charging time from hours to minutes by replacing the conventional graphite electrode with a network of tin-oxide nanoparticles. Batteries have two electrodes, called an anode and a cathode. The anodes in most of today's lithium-ion batteries are made of graphite.

Advertisement

Nanoparticles infiltrate, kill cancer cells from within

November 24, 2014 11:06 am | by Melanie Titanic-Schefft, Univ. of Cincinnati | News | Comments

Conventional treatment seeks to eradicate cancer cells by drugs and therapy delivered from outside the cell, which may also affect (and potentially harm) nearby normal cells. In contrast to conventional cancer therapy, a Univ. of Cincinnati team has developed several novel designs for iron-oxide based nanoparticles that detect, diagnose and destroy cancer cells using photo-thermal therapy (PTT).

Spiraling light, nanoparticles and insights into life’s structure

November 20, 2014 8:12 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

As hands come in left and right versions that are mirror images of each other, so do the amino acids and sugars within us. But unlike hands, only the left-oriented amino acids and the right-oriented sugars ever make into life as we know it. Scientists know the other varieties exist because when they synthesize these amino acids and sugars in a laboratory, roughly equal numbers of left- and right-facing arrangements form.

Study: Light may skew lab tests on nanoparticles’ health effects

November 19, 2014 8:38 am | by Chad Boutin, NIST | News | Comments

Truth shines a light into dark places. But sometimes to find that truth in the first place, it’s better to stay in the dark. That’s what recent findings at NIST show about methods for testing the safety of nanoparticles. It turns out that previous tests indicating that some nanoparticles can damage our DNA may have been skewed by inadvertent light exposure in the lab.

Two sensors in one

November 18, 2014 8:10 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology chemists have developed new nanoparticles that can simultaneously perform magnetic resonance imaging (MRI) and fluorescent imaging in living animals. Such particles could help scientists to track specific molecules produced in the body, monitor a tumor’s environment, or determine whether drugs have successfully reached their targets.

A quantum leap in nanoparticle efficiency

October 31, 2014 12:55 pm | News | Comments

In an international study Univ. of Melbourne and NIST found that pairs of closely spaced nanoparticles made of gold can act as “optical antennas”. These antennae concentrate the light shining on them into tiny regions located in the gap between the nanoparticles. Researchers found the precise geometry of nanoparticle pairs that maximizes light concentration, resolving a hotly debated area of quantum physics.

Microrockets fueled by water neutralize chemical, biological warfare agents

October 30, 2014 8:46 am | by American Chemical Society | News | Comments

With fears growing over chemical and biological weapons falling into the wrong hands, scientists are developing microrockets to fight back against these dangerous agents, should the need arise. In ACS Nano, they describe new spherical micromotors that rapidly neutralize chemical and biological agents and use water as fuel.

Nanoparticle safety: The quest for the gold standard

October 29, 2014 9:53 am | News | Comments

Researching the safety of nanoparticles is all the rage. Thousands of scientists worldwide are conducting research on the topic, examining the question of whether titanium dioxide nanoparticles or carbon nanotubes can get into the body’s lungs or blood. However, the amount of new knowledge has only increased marginally. How do nanoparticles get into the body? Researchers in Switzerland are attempting to establish standards.

Scientists to use tiny particles to fight big diseases

October 23, 2014 12:49 pm | Videos | Comments

A group of scientists in Florida have combined medicine and advanced nanotechnological engineering to create a smarter, more targeted therapy that could overcome the most lethal gynecologic cancer. The technology involves combining Taxol, a chemotherapy drug, with magneto-electric nanoparticles that can penetrate the blood-brain barrier.

Could I squeeze by you?

October 22, 2014 8:15 am | by Breehan Gerleman Lucchesi, Communications Specialist, Ames Laboratory | News | Comments

Scientists at Ames Laboratory have developed deeper understanding of the ideal design for mesoporous nanoparticles used in catalytic reactions, such as hydrocarbon conversion to biofuels. The research will help determine the optimal diameter of channels within the nanoparticles to maximize catalytic output.

All that glitters is...slimy? Gold nanoparticles measure snot stickiness

October 13, 2014 10:40 am | News | Comments

Some people might consider mucus an icky bodily secretion best left wrapped in a tissue, but to a group of researchers in North Carolina, snot is an endlessly fascinating subject. The team has developed a way to use gold nanoparticles and light to measure the stickiness of the slimy substance that lines our airways. The new method could help doctors better monitor and treat lung diseases such as cystic fibrosis.

Solid nanoparticles can deform like a liquid

October 13, 2014 8:24 am | by David L. Chandler, MIT News Office | News | Comments

A surprising phenomenon has been found in metal nanoparticles: They appear, from the outside, to be liquid droplets, wobbling and readily changing shape, while their interiors retain a perfectly stable crystal configuration. The research team behind the finding says the work could have important implications for the design of components in nanotechnology, such as metal contacts for molecular electronic circuits.

Plasmonic paper detects trace amounts of chemicals and molecules

October 10, 2014 12:25 pm | News | Comments

Using a common laboratory filter paper decorated with gold nanoparticles, researchers at Washington Univ. in St. Louis have created a unique platform, known as “plasmonic paper,” for detecting and characterizing even trace amounts of chemicals and biologically important molecules, including explosives, chemical warfare agents, environmental pollutants and disease markers.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading