Advertisement
Nanoparticles
Subscribe to Nanoparticles
View Sample

FREE Email Newsletter

Nanoscience makes your wine better

September 18, 2014 1:13 pm | by Anne-Mette Siem, Aarhus Univ. | News | Comments

One sip of a perfectly poured glass of wine leads to an explosion of flavors in your mouth. Researchers in Denmark have now developed a nanosensor that can mimic what happens in your mouth when you drink wine. The sensor, which uses gold nanoparticles to act as a “mini-mouth”, measures how you experience the sensation of dryness in the wine.

“Squid skin” metamaterials project yields vivid color display

September 16, 2014 7:41 am | by Jade Boyd, Rice Univ. | News | Comments

The quest to create artificial “squid skin”—camouflaging metamaterials that can “see” colors and automatically blend into the background—is one step closer to reality, thanks to a breakthrough color-display technology unveiled by Rice Univ. The new full-color display technology uses aluminum nanoparticles to create the vivid red, blue and green hues found in today’s top-of-the-line LCD televisions and monitors.

“Electronic skin” could improve early breast cancer detection

September 10, 2014 1:09 pm | News | Comments

For detecting cancer, manual breast exams seem low-tech compared to other methods such as MRI. But scientists are now developing an “electronic skin” that “feels” and images small lumps that fingers can miss. Knowing the size and shape of a lump could allow for earlier identification of breast cancer, which could save lives.

Advertisement

Nanotechnology to provide cleaner diesel engines

September 9, 2014 8:32 am | by Bertel Henning Jensen, Technical Univ. of Denmark | News | Comments

When it comes to diesel engine catalysts, which are responsible for cleansing exhaust fumes, platinum has unfortunately proved to be the only viable option. This has resulted in material costs alone accounting for half of the price of a diesel catalyst. Researchers in Denmark say they have developed a new way to manufacture catalysts that may result in a 25% reduction in the use of platinum.

Engineers develop new sensor to detect tiny individual nanoparticles

September 2, 2014 8:51 am | by Tony Fitzpatrick, Washington Univ. in St. Louis | News | Comments

A team of researchers in the U.S. and China have developed a new sensor that can detect and count nanoparticles, at sizes as small as 10 nm, one at a time. The researchers say the sensor, which is a Raman microlaser sensor in a silicon dioxide chip that does not need rare-earth ions to achieve high resolution, could potentially detect much smaller particles, viruses and small molecules.

Immune cells get cancer-fighting boost from nanomaterials

August 14, 2014 9:00 am | by Rase McCry, Yale Univ. | News | Comments

Scientists at Yale Univ. have developed a novel cancer immunotherapy that rapidly grows and enhances a patient’s immune cells outside the body using carbon nanotube-polymer composites; the immune cells can then be injected back into a patient’s blood to boost the immune response or fight cancer.

Nanotech invention improves effectiveness of the “penicillin of cancer”

August 14, 2014 8:01 am | by Jared Sagoff, Argonne National Laboratory | News | Comments

By combining magnetic nanoparticles with one of the most common and effective chemotherapy drugs, Argonne National Laboratory researchers have created a way to deliver anti-cancer drugs directly into the nucleus of cancer cells. They have created nano-sized bubbles, or “micelles,” that contain magnetic nanoparticles of iron oxide and cisplatin, a conventional chemotherapy drug also known as “the penicillin of cancer.”

“Trojan horse” treatment could beat brain tumors

August 13, 2014 12:55 pm | News | Comments

A smart technology which involves smuggling gold nanoparticles into brain cancer cells has proven highly effective in lab-based tests in the U.K. The technique could eventually be used to treat glioblastoma multiforme, which is the most common and aggressive brain tumor in adults, and notoriously difficult to treat.

Advertisement

Eco-friendly pre-fab nanoparticles could advance nanomanufacturing

August 13, 2014 11:21 am | by Janet Lathrop, UMass Amherst | News | Comments

A team of materials chemists, polymer scientists, device physicists and others at the Univ. of Massachusetts Amherst report a breakthrough technique for controlling molecular assembly of nanoparticles over multiple length scales that should allow faster, cheaper, more ecologically friendly manufacture of organic photovoltaics and other electronic devices.

Nanoparticle “alarm clock” may awaken immune systems put to sleep by cancer

July 25, 2014 3:09 pm | News | Comments

Cancerous tumors protect themselves by tricking the immune system into accepting everything as normal, even while cancer cells are dividing and spreading. One pioneering approach to combat this effect is to use nanoparticles to jumpstart the body's ability to fight tumors. Recent combines these therapeutic nanoparticles with heat to stimulate the immune system.

The stability of gold clusters: Every ligand counts

July 22, 2014 8:37 am | News | Comments

By colliding ultra-small gold particles with a surface and analyzing the resulting fragments, a trio of scientists at Pacific Northwest National Laboratory discovered how and why the particles break. This information is important for controlling the synthesis of these tiny building blocks that are of interest to catalysis, energy conversion and storage, and chemical sensing.

Ultrasonically propelled nanorods spin dizzyingly fast

July 22, 2014 8:32 am | News | Comments

Vibrate a solution of rod-shaped metal nanoparticles in water with ultrasound and they'll spin around their long axes like tiny drill bits. Why? No one yet knows exactly. But researchers at the NIST have clocked their speed, and it's fast. At up to 150,000 revolutions per minute, these nanomotors rotate 10 times faster than any nanoscale object submerged in liquid ever reported.

More than glitter

July 21, 2014 10:35 am | by Anne Trafton, MIT News Office | Videos | Comments

A special class of tiny gold particles can easily slip through cell membranes, making them good candidates to deliver drugs directly to target cells. A new study from Massachusetts Institute of Technology materials scientists reveals that these nanoparticles enter cells by taking advantage of a route normally used in vesicle-vesicle fusion, a crucial process that allows signal transmission between neurons. 

Advertisement

Self-assembling nanoparticle could improve MRI cancer scanning

July 16, 2014 8:44 am | News | Comments

Scientists have designed a new self-assembling nanoparticle that targets tumors, to help doctors diagnose cancer earlier. The new nanoparticle, developed by researchers in the U.K., boosts the effectiveness of magnetic resonance imaging scanning by specifically seeking out receptors that are found in cancerous cells.

Chemists develop novel catalyst with two functions

July 9, 2014 8:47 am | by Dr. Julia Weiler, Ruhr Univ. Bochum | News | Comments

A new type of catalyst, based on carbon, can facilitate two opposite reactions: electrolysis of water and combustion of hydrogen with oxygen. This bi-functionality, developed by researchers in Germany, is made possible from its construction: manganese-oxide or cobalt-oxide nanoparticles which are embedded in specially modified carbon, then integrated with nitrogen atoms in specific positions.

“Nanojuice” could improve how doctors examine the gut

July 7, 2014 8:05 am | by Cory Nealon, Univ. at Buffalo | News | Comments

Located deep in the human gut, the small intestine is not easy to examine: X-rays, MRIs and ultrasound images each suffer limitations. Univ. at Buffalo researchers are developing a new imaging technique involving nanoparticles suspended in liquid to form “nanojuice” that patients would drink. Upon reaching the small intestine, doctors would strike the nanoparticles with laser light, providing a non-invasive, real-time view of the organ.

Toward a new way to keep electronics from overheating

July 2, 2014 1:05 pm | News | Comments

Using something called a microchannel heat sink to simulate the warm environment of a working computer, researchers in Malaysia have analyzed three nanofluids for the traits that are important in an effective coolant. The results of their study show that the nanofluids, which are made of metallic nanoparticles that have been added to a liquid, such as water, all performed better than water as coolants, with one mixture standing out.

Silver in the washing machine

June 30, 2014 8:35 am | News | Comments

The antibacterial properties of silver-coated textiles are popular in the fields of sport and medicine. A team in Switzerland has now investigated how different silver coatings behave in the washing machine, and they have discovered something important: textiles with nano-coatings release fewer nano-particles into the washing water than those with normal coatings.

Researchers create quantum dots with single-atom precision

June 30, 2014 7:59 am | News | Comments

An international team of physicists including researchers from the U.S. Naval Research Laboratory has used a scanning tunneling microscope to create quantum dots with identical, deterministic sizes. The perfect reproducibility of these dots opens the door to quantum dot architectures completely free of uncontrolled variations, an important goal for technologies from nanophotonics to quantum information processing.

Diamond plates create nanostructures through pressure, not chemistry

June 27, 2014 3:09 pm | News | Comments

You wouldn’t think that mechanical force could process nanoparticles more subtly than the most advanced chemistry. But researchers at Sandia National Laboratories have created a newly patented and original method that uses simple pressure to produce finer and cleaner results in forming silver nanostructures than do chemical methods, which are not only inflexible in their results but leave harmful byproducts.

Nanoengineering boosts carrier multiplication in quantum dots

June 19, 2014 8:51 am | by Nancy Ambrosiano, Los Alamos National Laboratory | News | Comments

Los Alamos National Laboratory researchers have demonstrated an almost four-fold boost of the carrier multiplication yield with nanoengineered quantum dots. Carrier multiplication is when a single photon can excite multiple electrons. Quantum dots are novel nanostructures that can become the basis of the next generation of solar cells, capable of squeezing additional electricity out of the extra energy of blue and ultraviolet photons.

Nanoparticle production method could lead to better lights, lenses, solar cells

June 17, 2014 4:02 pm | News | Comments

Titanium dioxide nanoparticles show great promise as optical encapsulants or fillers for tunable refractive index coatings. However, they've been largely shunned because they’ve been difficult and expensive to make. Scientists at Sandia National Laboratories have now come up with an inexpensive way to synthesize properly sized titanium dioxide nanoparticles and is seeking partners who can demonstrate the process at industrial scale.

Nanoshell shields foreign enzymes used to starve cancer cells from immune system

June 17, 2014 11:24 am | News | Comments

Nanoengineers at UC San Diego have developed a nanoshell to protect foreign enzymes used to starve cancer cells as part of chemotherapy. Enzymes are naturally smart machines that are responsible for many complex functions and chemical reactions in biology. However, despite their huge potential, their use in medicine has been limited by the immune system, which is designed to attack foreign intruders.

Trapping the light fantastic

June 16, 2014 10:07 am | News | Comments

A large team of scientists have developed a “nanobarrel” molecular container that traps and concentrates light onto single molecule. These nanobarrels, which act as tiny test tubes, have been combined with gold nanoparticles so that researchers can detect what is in each one. The invention could be used as a low-cost and reliable diagnostic test.

DNA-lined nanoparticles form switchable thin films on liquid surface

June 11, 2014 8:22 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Scientists seeking ways to engineer the assembly of tiny particles measuring just billionths of a meter have achieved a new first: the formation of a single layer of nanoparticles on a liquid surface where the properties of the layer can be easily switched. Understanding the assembly of such nanostructured thin films could lead to the design of new kinds of membranes with a variable mechanical response for a wide range of applications.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading