Advertisement
Nanoparticles
Subscribe to Nanoparticles

The Lead

Nano shake-up: Nanocarriers fluctuate in size and shape

April 15, 2014 9:26 am | by Diane Kukich, Univ. of Delaware | News | Comments

Nanotechnology has unlocked new pathways for targeted drug delivery, including the use of nanocarriers that can transport cargoes of small-molecule therapeutics to specific locations in the body. Researchers have recently demonstrated that processing can have significant influence on the size of nanocarriers for targeted drug delivery. It was previously assumed that once a nanocarrier is created, it maintains its size and shape anywhere.

The Benefits of Single-particle ICP MS for the Characterization of Engineered Nanomaterials

April 15, 2014 8:41 am | by Rob Thomas and Chady Stephan | Articles | Comments

The unique properties of engineered nanoparticles have created intense interest in their...

Shiny quantum dots brighten future of solar cells

April 14, 2014 10:42 am | by Nancy Ambrosiano, Los Alamos National Laboratory | News | Comments

A house window that doubles as a solar panel could be on the horizon, thanks to recent quantum...

Tiny particles may pose big risk

April 10, 2014 11:05 am | by Anne Trafton, MIT News Office | News | Comments

Thousands of consumer products contain nanoparticles added by manufacturers to improve texture,...

View Sample

FREE Email Newsletter

Even thinner solar cells through use of nanoparticles

April 8, 2014 11:16 am | News | Comments

New research shows that nanostructures could enable more light to be directed into the active layer of solar cells, increasing their efficiency. Prof. Martina Schmid of Freie Univ. in Berlin has measured how irregularly distributed silver particles influence the absorption of light. Nanoparticles interact with one another via their electromagnetic near-fields, so that local “hot spots” arise where light is concentrated especially strongly.

Self-assembled silver superlattices create molecular machines

April 7, 2014 7:34 am | by John Toon, Georgia Institute of Technology | News | Comments

A combined computational and experimental study of self-assembled silver-based structures known as superlattices has revealed an unusual and unexpected behavior: arrays of gear-like molecular-scale machines that rotate in unison when pressure is applied to them.

Diamonds are an oil’s best friend

March 28, 2014 7:47 am | by Mike Williams, Rice Univ. | News | Comments

Scientists at Rice Univ. have mixed very low concentrations of diamond nanoparticles with mineral oil to test the nanofluid’s thermal conductivity and how temperature would affect its viscosity. They found it to be much better than nanofluids that contain higher amounts of oxide, nitride or carbide ceramics, metals, semiconductors, carbon nanotubes and other composite materials. In short, it is the best nanofluid for heat transfer.

Advertisement

World’s first light-activated antimicrobial surface also works in the dark

March 24, 2014 3:46 pm | News | Comments

Researchers in the U.K. have developed a new antibacterial material which has potential for cutting hospital acquired infections. The combination of two simple dyes with nanoscopic particles of gold is deadly to bacteria when activated by light, even under modest indoor lighting. And in a first for this type of substance, it also shows impressive antibacterial properties in total darkness.

Recovering valuable substances from wastewater

March 24, 2014 9:54 am | News | Comments

Phosphorus can be found in fertilizers, drinks and detergents, and it accumulates in waterways, polluting them. For this reason, researchers in Germany have developed a new platform for recovering this valuable but harmful element from water. They have attached bonding sites for phosphorus to particles so that they fish the phosphate anions out of the water and carry them “piggyback”. The particles can be applied using a magnet.

Engineers design “living materials”

March 24, 2014 9:45 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology engineers have coaxed bacterial cells to produce biofilms that can incorporate non-living materials, such as gold nanoparticles and quantum dots. These “living materials” combine the advantages of live cells, which respond to their environment and produce complex biological molecules, with the benefits of nonliving materials, which add functions such as conducting electricity or emitting light.

Antimony nanocrystals improved for batteries

March 18, 2014 8:21 am | by Peter Rüegg, ETH Zurich | News | Comments

Researchers have succeeded for the first time to produce uniform antimony nanocrystals. Tested as components of laboratory batteries, these are able to store a large number of both lithium and sodium ions. These nanomaterials operate with high rate and may eventually be used as alternative anode materials in future high-energy-density batteries.

Bright future for protein nanoprobes

March 17, 2014 11:39 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

The term a “brighter future” might be a cliché, but in the case of ultra-small probes for lighting up individual proteins, it is now most appropriate. Researchers at Lawrence Berkeley National Laboratory have discovered surprising new rules for creating ultra-bright light-emitting crystals that are less than 10 nm in diameter.

Advertisement

Brighter inks, without pigment

March 17, 2014 7:57 am | by Manny Morone '14, Harvard Univ. | News | Comments

Researchers at the Harvard Univ. School of Engineering and Applied Sciences are giving man-made materials structural color. Producing structural color is not easy, though; it often requires a material’s molecules to be in a very specific crystalline pattern, like the natural structure of an opal, which reflects a wide array of colors.

Bionic plants

March 17, 2014 7:36 am | by Anne Trafton, MIT News Office | News | Comments

Plants have many valuable functions: They provide food and fuel, release the oxygen that we breathe and add beauty to our surroundings. Now, a team of Massachusetts Institute of Technology researchers wants to make plants even more useful by augmenting them with nanomaterials that could enhance their energy production and give them completely new functions, such as monitoring environmental pollutants.

Technique uses ATP as trigger for targeted anti-cancer drug delivery

March 11, 2014 12:50 pm | News | Comments

Biomedical engineering researchers have developed a new technique that uses adenosine-5’-triphosphate (ATP), the so-called “energy molecule,” to trigger the release of anti-cancer drugs directly into cancer cells. Early laboratory tests show it increases the effectiveness of drugs targeting breast cancer. The technique was developed by researchers at North Carolina State Univ. and the Univ. of North Carolina at Chapel Hill.

Physics in 3-D? That's nothing. Try 0-D

March 4, 2014 10:43 am | by Tom Robinette, Univ. of Cincinnati | News | Comments

In physics, there's small, and then there's nullity, as in zero-dimensional. Univ. of Cincinnati researchers have reached this threshold with a special structure, zero-dimensional quantum dots, that may someday lead to better ways of harnessing solar energy, stronger lasers or more sensitive medical diagnostic devices.

Nanoparticle networks' design enhanced by theory

February 26, 2014 5:22 pm | by Anne Ju, Cornell Univ. | News | Comments

Cornell Univ. researchers have recently led what is probably the most comprehensive study to date of block copolymer nanoparticle self-assembly processes. The work is important, because using polymers to self-assemble inorganic nanoparticles into porous structures could revolutionize electronics.

Advertisement

Silver gone astray

February 25, 2014 5:04 pm | News | Comments

It has long been known that free, ionic silver particles can be highly toxic to aquatic organisms. Yet we a lack of detailed knowledge about the doses required to trigger a response and how the organisms deal with the stress. To learn more about the cellular processes, scientists in Switzerland subjected algae to a range of silver concentrations. The results are reassuring, but the presence of other stressors could compound the problem.

Microanalysis technique makes the most of small nanoparticle samples

February 24, 2014 10:31 am | News | Comments

Researchers from NIST and the FDA have demonstrated that they can make sensitive chemical analyses of minute samples of nanoparticles by, essentially, roasting them on top of a quartz crystal. The NIST-developed technique, "microscale thermogravimetric analysis," holds promise for studying nanomaterials in biology and the environment, where sample sizes often are quite small and larger-scale analysis won't work.

Tissue-penetrating light release chemotherapy inside cancer cells

February 24, 2014 9:26 am | News | Comments

A light-activated drug delivery system for treating cancer is particularly promising to traditional chemotherapy methods because it can accomplish spatial and temporal control of drug release. To this end, scientists have developed a new type of nanoparticle that can absorb energy from tissue-penetrating light that releases drugs in cancer cells.

Nanotracer tester tells about wells

February 24, 2014 7:55 am | News | Comments

A tabletop device invented at Rice Univ. can tell how efficiently a nanoparticle would travel through a well and may provide a wealth of information for oil and gas producers. The device gathers data on how tracers, microscopic particles that can be pumped into and recovered from wells, move through deep rock formations that have been opened by hydraulic fracturing.

New, improved photocatalytic materials developed in Japan

February 21, 2014 10:50 am | News | Comments

The scarcity of ultraviolet (UV) light in sunlight has held back the usefulness of titanium dioxide-based photocatalysts. Through the application of nanotechnology, researchers in Japan have recently succeeded in the development of better titanium dioxide-based material that can be activated by visible light. The solution lies in an array of nanoparticles that “simulate” the photoexcitation of UV light.

Researchers develop sticky nanoparticles to fight heart disease

February 18, 2014 10:51 am | News | Comments

Clemson Univ. researchers have developed nanoparticles that can deliver drugs targeting damaged arteries, a non-invasive method to fight heart disease. Heart disease is the leading cause of death in the U.S., according to the Centers for Disease Control and Prevention. One of the standard ways to treat clogged and damaged arteries currently is to implant vascular stents, which hold the vessels open and release such drugs as paclitaxel.

Pomegranate-inspired design solves problems for lithium-ion batteries

February 18, 2014 8:46 am | News | Comments

An electrode designed like a pomegranate—with silicon nanoparticles clustered like seeds in a tough carbon rind—overcomes several remaining obstacles to using silicon for a new generation of lithium-ion batteries, say its inventors at Stanford Univ. and the SLAC National Accelerator Laboratory.

Better RNA interference, inspired by nature

February 11, 2014 7:54 am | by Anne Trafton, MIT News Office | News | Comments

Inspired by tiny particles that carry cholesterol through the body, Massachusetts Institute of Technology chemical engineers have designed nanoparticles that can deliver snippets of genetic material that turn off disease-causing genes. This approach, known as RNA interference, holds great promise for treating cancer and other diseases. However, delivering enough RNA to treat the diseased tissue has proven difficult.

Bioengineer to create new nanoparticle to shore up arterial walls

February 5, 2014 12:21 pm | News | Comments

A Texas bioengineer has received a four-year, $1.4 million National Institutes of Health grant to create a nanoparticle system to shore up arterial walls following angioplasty and stenting procedures to treat coronary arterial disease. Kytai Nguyen discovered a way to use nanoparticles to help the arteries heal themselves more effectively.

Watching nanoparticles grow

February 5, 2014 8:55 am | News | Comments

Individual silver nanoparticles in solutions typically grow through single atom attachment, but when they reach a certain size they can link with other particles, according to a team which includes scientists at Pacific Northwest National Laboratory. This seemingly simple result has shifted a long-held scientific paradigm that did not consider kinetic models when explaining how nanoparticle ensembles formed.

Quantum dots provide complete control of photons

January 31, 2014 10:48 am | News | Comments

By emitting photons from a quantum dot at the top of a micropyramid, researchers at Linköping Univ. in Sweden are creating a polarized light source for such things as energy-saving computer screens and wiretap-proof communications.

Gold DNA strands close electric circuits in biosensors

January 29, 2014 12:06 pm | News | Comments

By letting DNA strands grow together with gold, scientists in Finland have developed a new concept for super-sensitive disease diagnostics. The method relies on growth of a DNA strand over a narrow gap between two electrodes in an electric circuit. The strand will only grow if a certain DNA molecule has bound to the surface of one electrode, which makes it possible to build diagnostic tests for detection of that specific DNA molecule.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading