Advertisement
Metamaterials
Subscribe to Metamaterials

The Lead

“Squid skin” metamaterials project yields vivid color display

September 16, 2014 7:41 am | by Jade Boyd, Rice Univ. | News | Comments

The quest to create artificial “squid skin”—camouflaging metamaterials that can “see” colors and automatically blend into the background—is one step closer to reality, thanks to a breakthrough color-display technology unveiled by Rice Univ. The new full-color display technology uses aluminum nanoparticles to create the vivid red, blue and green hues found in today’s top-of-the-line LCD televisions and monitors.

Engineers take step toward photonic circuits

August 20, 2014 8:35 am | by Richard Cairney, Univ. of Alberta | News | Comments

The invention of fiber optics revolutionized the way we share information, allowing us to...

Bottling up sound waves

August 4, 2014 3:23 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

There’s a new wave of sound on the horizon carrying with it a broad scope of tantalizing...

Building invisible materials with light

July 28, 2014 7:51 am | News | Comments

A new method of building materials using light, developed by researchers at the Univ. of...

View Sample

FREE Email Newsletter

New nonlinear metamaterial is a million times better than traditional options

July 2, 2014 3:48 pm | News | Comments

Nonlinear optical materials are widely used in laser systems, but they require high light intensity and long propagation to be effective. A team in Germany and Texas has designed a new 400-nm thick nonlinear mirror that delivers frequency-doubled output using input light intensity as small as that of a laser pointer. Compared to traditional nonlinear materials, the new option offers a million times increase in nonlinear optical response.

New NIST metamaterial gives light a one-way ticket

July 2, 2014 11:58 am | News | Comments

The light-warping structures known as metamaterials have a new trick in their ever-expanding repertoire. Researchers at NIST have built a silver, glass and chromium nanostructure that can all but stop visible light cold in one direction while giving it a pass in the other. The device could someday play a role in optical information processing and in novel biosensing devices.

Researchers develop new ultra-light, ultra-stiff 3-D printed materials

June 19, 2014 4:11 pm | by Kenneth Ma, LLNL | News | Comments

Imagine a material with the same weight and density as aerogel—a material so light it's called “frozen smoke”—but with 10,000 times more stiffness. This material could have a profound impact on the aerospace and automotive industries as well as other applications where lightweight, high-stiffness and high-strength materials are needed.

Advertisement

Advance brings “hyperbolic metamaterials” closer to reality

May 12, 2014 3:21 pm | News | Comments

Optical metamaterials harness clouds of electrons called surface plasmons to manipulate and control light. However, plasmonic devices often use gold or silver, which is incompatible with CMOS manufacturing processes. Purdue Univ. scientists have now developed an ultra-thin crystalline superlattice that instead uses metal-dielectrics. Applied using epitaxy, this “hyperbolic” film could greatly expand applications for metamaterials.

Genetic approach helps design broadband metamaterial

May 6, 2014 7:58 am | by A'ndrea Elyse Messer, Penn State Univ. | News | Comments

A specially formed material that can provide custom broadband absorption in the infrared can be identified and manufactured using "genetic algorithms," according to Penn State Univ. engineers, who say these metamaterials can shield objects from view by infrared sensors, protect instruments and be manufactured to cover a variety of wavelengths.

High-temperature plasmonics eyed for solar, computer innovation

April 18, 2014 8:09 am | by Emil Venere, Purdue Univ. | News | Comments

New plasmonic metamaterials that operate at high temperatures could radically improve solar cell performance and bring advanced computer data storage technology that uses heat to record information on a magnetic disk. The materials could make it possible to harness clouds of electrons called surface plasmons to manipulate and control light.

Researchers develop first phononic crystal that can be altered in real time

April 1, 2014 8:56 am | News | Comments

Using an acoustic metadevice that can influence the acoustic space and can control any of the ways in which waves travel, engineers have demonstrated, for the first time, that it is possible to dynamically alter the geometry of a 3-D colloidal crystal in real time. The crystals designed in the study, called metamaterials, are artificially structured materials that extend the properties of naturally occurring materials and compounds.  

Rainbow-catching waveguide could revolutionize energy technologies

March 28, 2014 11:50 am | by Cory Nealon, Univ. at Buffalo | News | Comments

More efficient photovoltaic cells. Improved radar and stealth technology. A new way to recycle waste heat generated by machines into energy. All may be possible due to breakthrough photonics research at the Univ. at Buffalo. The work explores the use of a nanoscale microchip component called a “multilayered waveguide taper array” that improves the chip’s ability to trap and absorb light.

Advertisement

Ultra-thin light detectors combine two very different technologies

March 27, 2014 9:36 am | News | Comments

Until now, it has been hard to couple light generation into layered semiconductor systems. Scientists in Austria have recently solved this problem using metamaterials, which are able to manipulate light in the terahertz range due to their special microscopic structure. This represents the first combination of metamaterials and quantum cascade structures.  

Brighter inks, without pigment

March 17, 2014 7:57 am | by Manny Morone '14, Harvard Univ. | News | Comments

Researchers at the Harvard Univ. School of Engineering and Applied Sciences are giving man-made materials structural color. Producing structural color is not easy, though; it often requires a material’s molecules to be in a very specific crystalline pattern, like the natural structure of an opal, which reflects a wide array of colors.

Nanoscale optical switch breaks miniaturization barrier

March 14, 2014 10:15 am | by David Salisbury, Vanderbilt Univ. | News | Comments

An ultra-fast and ultra-small optical switch has been invented that could advance the day when photons replace electrons in the innards of consumer products ranging from cell phones to automobiles. The new optical device can turn on and off trillions of times per second and consists of tiny individual switches made of a metamaterial that uses vanadium dioxide.

Acoustic cloaking device hides objects from sound

March 12, 2014 7:35 am | by Ken Kingery, Duke Univ. | News | Comments

Using little more than a few perforated sheets of plastic and a staggering amount of number crunching, Duke Univ. engineers have demonstrated the world’s first 3-D acoustic cloak. The new device reroutes sound waves to create the impression that both the cloak and anything beneath it are not there.

Programmable material: Sheet metal that never rattles

March 5, 2014 4:52 pm | News | Comments

Researchers from Empa and ETH Zurich have succeeded in producing a prototype of a vibration-damping material that could change the world of mechanics. The material of the future is not only able to damp vibrations completely; it can also specifically conduct certain frequencies further.

Advertisement

Researchers develop ultrathin perfect ultraviolet light absorber

February 27, 2014 12:00 pm | News | Comments

Ultraviolet light (UV) has not only harmful effects on molecules and biological tissue like human skin but it also can impair the performance of organic solar cells upon long-term exposure. Researchers in Germany have now developed a so-called plasmonic metamaterial which is compatible with solar technology and completely absorbs UV light despite being only 20 nm thin.

Scientists twist sound with metamaterials

February 25, 2014 5:14 pm | News | Comments

A Chinese-U.S. research team is exploring the use of metamaterials to create devices that manipulate sound in versatile and unprecedented ways. In a recently published paper, the team reports a simple design for a device, called an acoustic field rotator, which can twist wave fronts inside it so that they appear to be propagating from another direction.

Nanopillars could improve conversion of heat to electricity

February 21, 2014 7:36 am | News | Comments

Univ. of Colorado Boulder scientists have found a creative way to radically improve thermoelectric materials, a finding that could one day lead to the development of improved solar panels and more energy-efficient cooling equipment. The technique, building an array of tiny pillars on top of a sheet of thermoelectric material, represents an entirely new way of attacking a century-old problem.

Metamaterial could speed up underwater communications by orders of magnitude

January 24, 2014 11:46 am | News | Comments

Researchers in California have made progress in a project to develop fast-blinking light-emitting diode systems for underwater optical communications. They have shown that an artificial metamaterial can improve the “blink speed” of a fluorescent light-emitting dye molecule 76 times faster than normal while increasing brightness 80-fold.

Highly efficient broadband terahertz radiation from metamaterials

January 20, 2014 1:52 pm | News | Comments

Scientists at Ames Laboratory have demonstrated broadband terahertz (THz) wave generation using metamaterials. The discovery may help develop noninvasive imaging and sensing, and make possible THz-speed information communication, processing and storage.

Superlens extends range of wireless power transfer

January 13, 2014 7:47 am | News | Comments

Inventor Nikola Tesla imagined the technology to transmit energy through thin air almost a century ago, but experimental attempts at the feat have so far resulted in cumbersome devices that only work over very small distances. But now, Duke Univ. researchers have demonstrated the feasibility of wireless power transfer using low-frequency magnetic fields over distances much larger than the size of the transmitter and receiver.

Research lays out theory for metamaterial that acts as an analog computer

January 10, 2014 8:39 am | News | Comments

The field of metamaterials has produced structures with unprecedented abilities, including flat lenses, invisibility cloaks and even optical metatronic devices that can manipulate light in the way electronic circuitry manipulates the flow of electrons.  Now, the birthplace of the digital computer, ENIAC, is using this technology in the rebirth of analog computing.

Researchers design first battery-powered invisibility cloaking device

December 18, 2013 1:37 pm | News | Comments

Researchers at The Univ. of Texas at Austin have proposed the first design of a cloaking device that uses an external source of energy to significantly broaden its bandwidth of operation. The team has proposed a design for an active cloak that draws energy from a battery, allowing objects to become undetectable to radio sensors over a greater range of frequencies.

Researchers create a nonlinear light-generating zero-index metamaterial

December 5, 2013 2:57 pm | News | Comments

The Information Age will get a major upgrade with the arrival of quantum processors faster and more powerful than today’s supercomputers. For the benefits of this new Information Age 2.0 to be fully realized, however, quantum computers will need fast and efficient multi-directional light sources. While quantum technologies remain grist for science fiction, a team of researchers has taken an important step towards efficient light generation.

New hologram technology created with tiny nanoantennas

November 15, 2013 7:55 am | News | Comments

Researchers have created tiny holograms using a metasurface capable of the ultra-efficient control of light, representing a potential new technology for advanced sensors, high-resolution displays and information processing. The metasurface, thousands of V-shaped nanoantennas formed into an ultra-thin gold foil, could make possible optical switches small enough to be integrated into computer chips for information processing.

Phonons may block sound, channel heat with unprecedented precision

November 13, 2013 1:48 pm | News | Comments

The phonon, like the photon or electron, is a physical particle that travels like waves, representing mechanical vibration. Phonons transmit everyday sound and heat. Recent progress in phononics by a research scientist at Georgia Institute of Technology has led to the development of new ideas and devices that are using phononic properties to control sound and heat, even to the point of freeing bustling city blocks from the noise of traffic.

Thin, active invisibility cloak demonstrated for first time

November 13, 2013 7:44 am | News | Comments

Invisibility cloaking is no longer the stuff of science fiction: Two researchers at the Univ. of Toronto have demonstrated an effective invisibility cloak that is thin, scalable and adaptive to different objects. The team designed and tested a new approach to cloaking—by surrounding an object with small antennas that collectively radiate an electromagnetic field. The radiated field cancels out any waves scattering off the cloaked object.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading