Advertisement
Metals
Subscribe to Metals
View Sample

FREE Email Newsletter

Shape helps catalyst extract energy from biomass

April 2, 2014 6:06 am | News | Comments

Biomass is a good alternative for fossil fuels, but converting biomass into useful chemicals and fuels is difficult in practice. The metal oxide CeO2 can help the process by activating water, but until recent research in the Netherlands, it was not clear in which form the reactivity of this catalyst was highest.

Graphene-copper sandwich may improve, shrink electronics

March 12, 2014 2:00 pm | by Sean Nealon, Univ. of Riverside, Calif. | News | Comments

Researchers have discovered that creating a graphene-copper-graphene “sandwich” strongly enhances the heat conducting properties of copper, a discovery that could further help in the downscaling of electronics.

Squeezing light into metals

March 7, 2014 7:50 am | News | Comments

Using an inexpensive inkjet printer, Univ. of Utah electrical engineers produced microscopic structures that use light in metals to carry information. This new technique, which controls electrical conductivity within such microstructures, could be used to rapidly fabricate superfast components in electronic devices, make wireless technology faster or print magnetic materials.

Advertisement

Programmable material: Sheet metal that never rattles

March 5, 2014 4:52 pm | News | Comments

Researchers from Empa and ETH Zurich have succeeded in producing a prototype of a vibration-damping material that could change the world of mechanics. The material of the future is not only able to damp vibrations completely; it can also specifically conduct certain frequencies further.

Researchers discover highly promising new class of nanocatalyst

February 28, 2014 7:23 am | by Lyn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A big step in the development of advanced fuel cells and water-alkali electrolyzers has been achieved with the discovery of a new class of bimetallic nanocatalysts that are an order of magnitude higher in activity than the target set by the U.S. Department of Energy for 2017. The new catalysts feature a 3-D catalytic surface activity that makes them significantly more efficient and far less expensive than the best platinum catalysts.  

Silver gone astray

February 25, 2014 5:04 pm | News | Comments

It has long been known that free, ionic silver particles can be highly toxic to aquatic organisms. Yet we a lack of detailed knowledge about the doses required to trigger a response and how the organisms deal with the stress. To learn more about the cellular processes, scientists in Switzerland subjected algae to a range of silver concentrations. The results are reassuring, but the presence of other stressors could compound the problem.

Silver linings

February 25, 2014 8:48 am | by Justin H.S. Breaux, Argonne National Laboratory | News | Comments

Researchers at Argonne National Laboratory in collaboration with scientists at Northwestern Univ. are the first to grow graphene on silver which, until now, posed a major challenge to many in the field. Part of the issue has to do with the properties of silver, the other involves the process by which graphene is grown.

On the road to Mottronics

February 25, 2014 8:38 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Mottronics is a term seemingly destined to become familiar to aficionados of electronic gadgets. Named for the Nobel laureate Nevill Francis Mott, Mottronics involve materials that can be induced to transition between electrically conductive and insulating phases. If these phase transitions can be controlled, Mott materials hold promise for future transistors and memories that feature higher energy efficiencies and faster switching speeds.

Advertisement

Solving an evolutionary puzzle

February 12, 2014 4:58 pm | News | Comments

For four decades, polychlorinated biphenyls (PCBs) and heavy metals from nearby manufacturing plants flowed into New Bedford Harbor, creating one of the EPA’s largest Superfund cleanup sites. It’s also the site of an evolutionary puzzle: small Atlantic killifish are not only tolerating the toxic conditions in the harbor, they seem to be thriving there. In a new paper, researchers may have an explanation for their genetic resistance to PCBs.

Fine-tuning a rainbow of colors at the nanoscale

February 11, 2014 1:34 pm | News | Comments

Engineers are increasingly turning to plasmonic color filters (PCFs) to create and control a broad spectrum of colors for imaging applications. However, PCF light transmission efficiency has been limited to only about 30%, less than half the rate of conventional filters. Researchers have now developed a new PCF scheme that achieves a transmission efficiency of 60 to 70%.

X-ray analysis shows thermotropic phase boundaries in classic ferroelectrics

February 6, 2014 12:52 pm | News | Comments

Lead-free BaTiO3 and KNbO3 ferroelectrics have been known and studied for more than 60 years. However, recent scanning x-ray diffraction studies at Argonne National Laboratory have shown new low-symmetry intermediate phases in these materials that lend a thermotropic character to otherwise well-known phase transitions. The findings show that these transitions in ferroelectrics are closely coupled to the underlying domain microstructure.  

Heavy metal in the early cosmos

February 6, 2014 9:23 am | by Aaron Dubrow, Texas Advanced Computing Center | News | Comments

Texas Advanced Computing Center recently reported the results of several massive numerical simulations charting the forces of the universe in its first hundreds of millions of years. The study, which used some of the world's most powerful supercomputers, has refined our understanding of how the first galaxies formed, and, in particular, how metals in the stellar nurseries influenced the characteristics of the stars in the first galaxies.

An electrical switch for magnetism

January 31, 2014 11:13 am | News | Comments

Only a few elements in the periodic table are inherently magnetic, but scientists have recently discovered that gold, silver, platinum, palladium and other transition metals demonstrate magnetic behavior when formed into nanometer-scale structures. Scientists at the RIKEN Center for Emergent Matter Science have now shown that this nanoscale magnetism in thin films of platinum can be controlled using an externally applied electric field.

Advertisement

New catalyst converts greenhouse gases into chemicals

January 31, 2014 11:02 am | by Karen B. Roberts, Univ. of Delaware | News | Comments

A team of researchers at the Univ. of Delaware has developed a highly selective catalyst capable of electrochemically converting carbon dioxide to carbon monoxide with 92% efficiency. The carbon monoxide then can be used to develop useful chemicals. The exceptionally high activity of the new electrocatalyst is due to its extremely large and highly curved internal surface.

Quantum dots provide complete control of photons

January 31, 2014 10:48 am | News | Comments

By emitting photons from a quantum dot at the top of a micropyramid, researchers at Linköping Univ. in Sweden are creating a polarized light source for such things as energy-saving computer screens and wiretap-proof communications.

New catalytic converter could cut fuel consumption, car manufacturing costs

January 29, 2014 10:27 am | News | Comments

A new catalytic converter developed in the U.K. could cut fuel consumption and manufacturing costs significantly. Tests suggest that the new prototype, which uses up to 80% less rare metal than a conventional converter, could reduce fuel consumption in a standard vehicle by up to 3%. Metals such as platinum now account for 60 to 70% of the cost of the component.

Researchers patent new antibacterial agent

January 22, 2014 8:54 am | by Rhona Schwartz, Univ. of Washington School of Dentistry | News | Comments

Four Univ. of Washington School of Dentistry faculty members have received a patent for a new way of using titanium-based materials to fight oral bacteria. The patent culminates several years of work in which the group studied a novel class of substances called titanates and peroxotitanates, which can inhibit bacterial growth when bound to metal ions.

Researchers uncover what makes superalloys super

January 20, 2014 6:38 pm | News | Comments

Turbine manufacturers have employed special nickel-based high-performance “superalloys” for decades as a way to guarantee turbines maintain their chemical and mechanical properties almost to their melting point. New research shows in detail how new phases in a nickel-based alloy form and evolve during heat treatment, providing clues to how these high-performance alloys could be improved.

Metal ink could ease the way toward flexible electronic books, displays

January 8, 2014 9:02 am | News | Comments

Scientists are reporting the development of a novel metal ink made of small sheets of copper that can be used to write a functioning, flexible electric circuit on regular printer paper. Their report on the conductive ink, which could pave the way for a wide range of new bendable gadgets, such as electronic books that look and feel more like traditional paperbacks, appears in ACS Applied Materials & Interfaces.

Scientists discover clue in the case of the missing silver

January 3, 2014 9:59 am | by Shannon Palus, Idaho National Laboratory | News | Comments

Tristructural-isotopic (TRISO) fuel particles are viewed as a safer, more efficient next-generation nuclear fuel. A jawbreaker-like combination of different layers act to contain radioactive byproducts within the fuel. However, sometimes the silver bits inside break loose and get out. Researchers working at Idaho National Laboratory have recently discovered where this silver is going, and hope to learn why.

Researchers make a micro-muscular breakthrough

December 19, 2013 8:27 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A team of researchers with Lawrence Berkeley National Laboratory has demonstrated a micro-sized robotic torsional muscle/motor made from vanadium dioxide that for its size is a thousand times more powerful than a human muscle. It is able to catapult objects 50 times heavier than itself over a distance five times its length within just 60 milliseconds.

Jet-propelled wastewater treatment

December 19, 2013 7:55 pm | News | Comments

Researchers from the Max Planck Institute for Intelligent Systems in Stuttgart have developed a new method for the active degradation of organic pollutants in solution by using swimming microengines. These tiny “engines” are made from platinum and iron and are highly efficient in removing organic pollutants from water using hydrogen peroxide.

First plant-based “microswimmers” could propel drugs to the right location

December 19, 2013 7:30 pm | News | Comments

In the quest to shrink motors so they can maneuver in tiny spaces like inside and between human cells, scientists have taken inspiration from millions of years of plant evolution and incorporated, for the first time, corkscrew structures from plants into a new kind of helical “microswimmer.” The low-cost development, which appears in ACS’ journal Nano Letters, could be used on a large scale in targeted drug delivery and other applications.

Lowering titanium’s cost, environmental footprint for lightweight products

December 18, 2013 2:34 pm | News | Comments

A new method for extracting titanium significantly reduces the energy required to separate it from its tightly bound companion, oxygen. Scientists have discovered that they could eliminate the energy-intensive steps of the Kroll process, a finding that could lower cost and accessibility of future titanium products.

Roots of the lithium battery problem: Dendrites start below the surface

December 18, 2013 8:28 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Lithium-ion batteries could have significantly higher energy density if their graphite anodes were to be replaced by lithium metal anodes. Hampering this change, however, has been the persistent growth of dendrites that eventually short-circuit the battery. Researchers have recently discovered that the bulk of dendrite material lies below the surface of the lithium electrode, underneath the electrode/electrolyte interface.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading