Advertisement
Metals
Subscribe to Metals

The Lead

How iron feels the heat

February 13, 2015 1:34 pm | by Jessica Stoller-Conrad, Caltech | News | Comments

As you heat up a piece of iron, the arrangement of the iron atoms changes several times before melting. This unusual behavior is one reason why steel, in which iron plays a starring role, is so sturdy and ubiquitous in everything from teapots to skyscrapers. But the details of just how and why iron takes on so many different forms have remained a mystery.

Mapping Can Recover Serial Numbers in Metals

February 13, 2015 7:00 am | by NIST | News | Comments

Researchers have demonstrated a technique for mapping deformation in metals that can recover...

How to prevent metal embrittlement

February 5, 2015 8:00 am | by David L. Chandler, MIT News Office | News | Comments

When a metal tube lines an oil well thousands of feet below the surface of the ocean, that metal...

Missing link in metal physics explains Earth’s magnetic field

January 29, 2015 9:58 am | by Carnegie Institute | News | Comments

Earth’s magnetic field is crucial for our existence, as it shields the life on our planet’s...

View Sample

FREE Email Newsletter

Atom-high steps halt oxidation of metal surfaces

January 2, 2015 8:27 am | by Karen McNulty Walsh, Binghamton Univ. | News | Comments

Rust never sleeps. Whether a reference to the 1979 Neil Young album or a product designed to protect metal surfaces, the phrase invokes the idea that corrosion from oxidation is an inevitable, persistent process. But a new Binghamton Univ. study reveals that certain features of metal surfaces can stop the process of oxidation in its tracks.

‘High-entropy’ alloy is as light as aluminum, as strong as titanium alloys

December 11, 2014 8:09 am | News | Comments

Researchers have developed a new “high-entropy” metal alloy that has a higher strength-to-weight ratio than any other existing metal material. High-entropy alloys are materials that consist of five or more metals in approximately equal amounts. 

Researchers develop efficient method to produce nanoporous metals

November 25, 2014 10:42 am | by Kenneth Ma, LLNL | News | Comments

Nanoporous metals have a wide range of applications because of their superior qualities. They posses a high surface area for better electron transfer, which can lead to the improved performance of an electrode in an electric double capacitor or battery. Nanoporous metals offer an increased number of available sites for the adsorption of analytes, a highly desirable feature for sensors.

Advertisement

Engineer readies for rapid discovery of metallic glasses

November 4, 2014 9:22 am | by Rase McCry, Yale Univ. | News | Comments

Yale Univ. engineer Jan Schroers will lead a three-year, $1.2 million project intended to dramatically accelerate the pace of discovering and characterizing bulk metallic glasses (BMGs), a versatile type of pliable glass that’s stronger than steel. The grant will enable Schroers’ team to screen more than 3,000 potential BMG alloys in a week, a vast improvement over traditional methods.

Atomic trigger shatters mystery of how glass deforms

October 20, 2014 11:04 am | News | Comments

Research at Oak Ridge National Laboratory has cracked one mystery of glass to shed light on the mechanism that triggers its deformation before shattering. The study improves understanding of glassy deformation and may accelerate broader application of metallic glass, a moldable, wear-resistant, magnetically exploitable material that is thrice as strong as the mightiest steel and ten times as springy.

Project to detect possible damages in aircraft parts early in process

October 16, 2014 9:21 am | News | Comments

Univ. of Texas at Arlington engineering professors have received an Air Force grant to examine the material surface at the micro- and nano-scale level that will provide clues for predicting fatigue in aircraft parts. The new approach will rely on a scanning whitelight interferometric surface profiler integrated with a compact mechanical tester and an electron backscatter diffraction module to deliver in-situ 3-D surface profiling.

A brighter design emerges for low-cost, “greener” LED light bulbs

October 15, 2014 2:52 pm | News | Comments

The phase-out of traditional incandescent bulbs in the U.S. and elsewhere, as well as a growing interest in energy efficiency, has given LED lighting a sales boost. That trend could be short-lived as key materials known as rare earth elements become more expensive. Scientists at Rutgers Univ., however, have now designed new materials for making household LED bulbs without using these ingredients.

Cheap catalyst gets expensive accessory

October 15, 2014 12:06 pm | News | Comments

Iron catalysts remove oxygen inexpensively, but are susceptible to rust or oxidation in biofuel production. Precious metals that resist corrosion are even less efficient at removing oxygen. But adding just a touch of palladium to the iron produces a catalyst that quickly removes oxygen atoms, easily releases the desired products, and doesn't rust, according to scientists at Pacific Northwest National Laboratory and Washington State Univ.

Advertisement

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven

October 14, 2014 12:09 pm | by Ingrid Söderbergh, Umea Univ. | News | Comments

Swedish and Chinese researchers have recently shown how a unique nano-alloy composed of palladium nano-islands embedded in tungsten nanoparticles creates a new type of catalysts for highly efficient oxygen reduction, the most important reaction in hydrogen fuel cells. Their results are published in the scientific journal Nature Communications.

How to make a “perfect” solar absorber

September 29, 2014 8:08 am | by David L. Chandler, MIT News Office | News | Comments

The key to creating a material that would be ideal for converting solar energy to heat is tuning the material’s spectrum of absorption just right: It should absorb virtually all wavelengths of light that reach Earth’s surface from the sun—but not much of the rest of the spectrum, since that would increase the energy that is reradiated by the material, and thus lost to the conversion process.

Robotic fabric could bring “active clothing”, wearable robots

September 23, 2014 2:20 pm | by Emil Venere, Purdue Univ. | News | Comments

Researchers are developing a robotic fabric that moves and contracts and is embedded with sensors, an approach that could lead to "active clothing" or a new class of "soft" robots. The robotic fabric, developed at Purdue Univ.,  is a cotton material containing sensors made of a flexible polymer and threadlike strands of a shape-memory alloy that return to a coiled shape when heated, causing the fabric to move.

New formulation leads to improved liquid battery

September 23, 2014 2:07 pm | by David L. Chandler, MIT | News | Comments

Donald Sadoway and his colleagues at the Massachusetts Institute of Technology have already started a company to produce electrical-grid-scale liquid batteries, whose layers of molten material automatically separate due to their differing densities. But a newly developed formula substitutes different metals for the molten layers. The new formula allows the battery to work at a much lower temperature.

Researchers control surface tension to manipulate liquid metals

September 16, 2014 9:40 am | by Matt Shipman, News Services, North Carolina State Univ. | Videos | Comments

Researchers from North Carolina State Univ. have developed a technique for controlling the surface tension of liquid metals by applying very low voltages, opening the door to a new generation of reconfigurable electronic circuits, antennas and other technologies. The technique hinges on the fact that the oxide “skin” of the metal acts as a surfactant, lowering the surface tension between the metal and the surrounding fluid.

Advertisement

Angling chromium to let oxygen through

September 10, 2014 6:03 pm | by Mary Beckman, PNNL | News | Comments

Researchers have been trying to increase the efficiency of solid oxide fuel cells by lowering the temperatures at which they run. In a serendipitous finding at Pacific Northwest National Laboratory, researchers have created a new form of strontium-chromium oxide that performs as a semiconductor and also allows oxygen to diffuse easily, a requirement for a solid oxide fuel cell.

Nanotechnology to provide cleaner diesel engines

September 9, 2014 8:32 am | by Bertel Henning Jensen, Technical Univ. of Denmark | News | Comments

When it comes to diesel engine catalysts, which are responsible for cleansing exhaust fumes, platinum has unfortunately proved to be the only viable option. This has resulted in material costs alone accounting for half of the price of a diesel catalyst. Researchers in Denmark say they have developed a new way to manufacture catalysts that may result in a 25% reduction in the use of platinum.

Researchers test multi-element, high-entropy alloy with surprising results

September 5, 2014 7:59 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A new concept in metallic alloy design has yielded a multiple-element material that not only tests out as one of the toughest on record, but, unlike most materials, the toughness as well as the strength and ductility of this alloy actually improves at cryogenic temperatures. This multi-element alloy was synthesized and tested through a collaboration of researchers.

Researchers test multi-element, high-entropy alloy with surprising results

September 5, 2014 7:50 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A new concept in metallic alloy design called “high-entropy alloys” has yielded a multiple-element material that tests out as one of the toughest on record. But, unlike most materials, the toughness as well as the strength and ductility of this alloy, which contains five major elements, actually improves at cryogenic temperatures.

Researchers observe the phenomenon of "lithium plating" during the charging process

September 3, 2014 8:55 am | News | Comments

When metallic lithium forms and deposits during the charging process in a lithium-ion battery, it can lead to a reduced battery lifespan and even short circuits. Using neutron beams, scientists have now peered into the inner workings of a functioning battery without destroying it. In the process, they have resolved this so-called lithium plating mystery.

Measurement at Big Bang conditions confirms lithium problem

August 27, 2014 11:21 am | News | Comments

The field of astrophysics has a stubborn problem and it’s called lithium. The quantities of lithium predicted to have resulted from the Big Bang are not actually present in stars. But the calculations are correct, a fact which has now been confirmed for the first time in experiments conducted at the underground laboratory in the Gran Sasso mountain in Italy.

Copper shines as flexible conductor

August 26, 2014 4:20 pm | News | Comments

Sensors made with copper could be cheap, light, flexible and highly conductive. Making such concepts affordable enough for general use remains a challenge but a new way of working with copper nanowires and a PVA “nano glue” could be a game-changer. Engineers in Australia have found a way of making flexible copper conductors cost-effective enough for commercial applications.

Laser pulse turns glass into a metal

August 26, 2014 10:06 am | News | Comments

For tiny fractions of a second, when illuminated by a laser pulse, quartz glass can take on metallic properties. The phenomenon, recently revealed by large-scale computer simulations, frees electrons, allowing quartz to become opaque and conduct electricity. The effect could be used to build logical switches which are much faster than today’s microelectronics.

Researchers close in on pure lithium anode

July 31, 2014 4:15 pm | by Andrew Myers, Stanford Univ. | News | Comments

In a recent paper, a team at Stanford Univ. which includes materials science expert Yi Cui and 2011 R&D Magazine Scientist of the Year Steven Chu report that they have taken a big step toward accomplishing what battery designers have been trying to do for decades: design a pure lithium anode.

The stability of gold clusters: Every ligand counts

July 22, 2014 8:37 am | News | Comments

By colliding ultra-small gold particles with a surface and analyzing the resulting fragments, a trio of scientists at Pacific Northwest National Laboratory discovered how and why the particles break. This information is important for controlling the synthesis of these tiny building blocks that are of interest to catalysis, energy conversion and storage, and chemical sensing.

Chemists eye improved thin films with metal substitution

July 21, 2014 1:46 pm | News | Comments

The yield so far is small, but chemists at the Univ. of Oregon have developed a low-energy, solution-based mineral substitution process to make a precursor to transparent thin films. The inorganic process is a new approach to transmetalation, in which individual atoms of one metal complex are individually substituted in water. The innovation could find use in electronics and alternative energy devices.

Chemists develop novel catalyst with two functions

July 9, 2014 8:47 am | by Dr. Julia Weiler, Ruhr Univ. Bochum | News | Comments

A new type of catalyst, based on carbon, can facilitate two opposite reactions: electrolysis of water and combustion of hydrogen with oxygen. This bi-functionality, developed by researchers in Germany, is made possible from its construction: manganese-oxide or cobalt-oxide nanoparticles which are embedded in specially modified carbon, then integrated with nitrogen atoms in specific positions.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading