Advertisement
Materials Science
Subscribe to Materials Science
View Sample

FREE Email Newsletter

New York invests in nanotech with General Electric

July 15, 2014 4:17 pm | by David Klepper - Associated Press - Associated Press | News | Comments

New York state is teaming with General Electric Co. and other companies on a $500 million initiative to spur high-tech manufacturing of miniature electronics, Gov. Andrew Cuomo and GE CEO Jeffrey Immelt announced Tuesday. The state will invest $135 million for the collaborative program, which will be based out of the SUNY College of Nanoscale Science and Engineering in Albany.

3-D nanostructure could benefit nanoelectronics, gas storage

July 15, 2014 10:57 am | by B.J. Almond, Rice Univ. | News | Comments

A 3-D porous nanostructure would have a balance of strength, toughness and ability to transfer heat that could benefit, nanoelectronics, gas storage and composite materials that perform multiple functions, according to engineers at Rice Univ. The researchers made this prediction by using computer simulations to create a series of 3-D prototypes with boron nitride, a chemical compound made of boron and nitrogen atoms.

Swiss cross made from just 20 single atoms

July 15, 2014 9:14 am | News | Comments

Together with teams from Finland and Japan, physicists from the Univ. of Basel in Switzerland were able to place 20 single bromine atoms on a fully insulated surface at room temperature to form the smallest “Swiss cross” ever created. The effort is a breakthrough because the fabrication of artificial structures on an insulator at room temperature is difficult. It is largest number of atomic manipulations ever achieved at room temperature.

Advertisement

Researchers discover boron “buckyball”

July 14, 2014 11:44 am | News | Comments

The discovery of buckyballs helped usher in the nanotechnology era. Now, researchers from Brown Univ. and colleagues from China have shown that boron, carbon’s neighbor on the periodic table, can form a cage-like molecule similar to the buckyball. Until now, such a boron structure had only been a theoretical speculation.

From stronger Kevlar to better biology

July 14, 2014 9:17 am | by Angela Herring, Northeastern Univ. | News | Comments

Mar­ilyn Minus, a materials expert and assis­tant pro­fessor at Northeastern Univ., is exploring directed self-assembly methods using carbon nanotubes and polymer solutions. So far, she’s used the approach to develop a polymer com­posite mate­rial that is stronger than Kevlar yet much lighter and less expen­sive. Minus is now expanding this work to incor­po­rate more polymer classes: flame retar­dant mate­rials and bio­log­ical molecules.

Phase-changing material could allow robots to switch between hard and soft states

July 14, 2014 7:35 am | by Helen Knight, MIT News correspondent | Videos | Comments

In the movie “Terminator 2,” the shape-shifting T-1000 robot morphs into a liquid state to squeeze through tight spaces or to repair itself when harmed. Now a phase-changing material built from wax and foam, and capable of switching between hard and soft states, could allow even low-cost robots to perform the same feat.

Oxygen extends graphene’s reach

July 11, 2014 1:05 pm | News | Comments

The addition of elements to the surface of graphene can modify the material’s physical and chemical properties, potentially extending the range of possible applications. Recently performed theoretical calculations at RIKEN in Japan show that the addition of oxygen to graphene on copper substrates results in enhanced functionalization. The resulting structure, known as an enolate, make support applications that require catalytic response.

Peeling back the layers of thin film structure and chemistry

July 11, 2014 12:33 pm | by Erika Gebel Berg, Argonne National Laboratory | News | Comments

Perovskites continue to entice materials scientists with their mix of conductivity, ferroelectricity, ferromagnetism, and catalytic activity. In recent years, scientists realized that they could vastly improve the properties of perovskites by assembling them into thin films, but nobody knew the reason why. But studying the chemistry layer-by-layer, experts working with x-ray beamline at Argonne National Laboratory are getting close.

Advertisement

Uncertainty gives scientists new confidence in search for novel materials

July 11, 2014 8:19 am | by Andrew Gordon, SLAC National Accelerator Laboratory | News | Comments

Scientists at Stanford Univ. and the Dept. of Energy (DOE)’s SLAC National Accelerator Laboratory have found a way to estimate uncertainties in computer calculations that are widely used to speed the search for new materials for industry, electronics, energy, drug design and a host of other applications. The technique, reported in Science, should quickly be adopted in studies that produce some 30,000 scientific papers per year.

Silicon oxide memories catch manufacturers’ eye

July 10, 2014 5:06 pm | by Jade Boyd, Rice Univ. | News | Comments

First developed five years ago at Rice Univ., silicon oxide memories are a type of two-terminal, “resistive random-access memory” (RRAM) technology that beats flash memory’s data density by a factor of 50. At Rice, the laboratory of chemist and 2013 R&D Magazine Scientist of the Year James Tour has recently developed a new version of RRAM that Tour believes outperforms more than a dozen competing versions.

“Nanopixels” promise thin, flexible high-res displays

July 10, 2014 9:35 am | News | Comments

A team in the U.K. has found that by sandwiching a 7-nm thick layer of a phase change material between two layers of a transparent electrode they could use a tiny current to “draw” images within the sandwich “stack”. The discovery could make it possible to create pixels just a few hundred nanometers across and pave the way for extremely high-resolution and low-energy thin, flexible displays.

Technology illuminates colder objects in deep space

July 10, 2014 7:42 am | News | Comments

Too cool and faint, many objects in the universe are impossible to detect with visible light. Now a Northwestern Univ. team has refined a new technology that could make these colder objects more visible, paving the way for enhanced exploration of deep space. The new technology uses a type II superlattice material called indium arsenide/indium arsenide antimonide (InAs/InAsSb).

Chemists develop novel catalyst with two functions

July 9, 2014 8:47 am | by Dr. Julia Weiler, Ruhr Univ. Bochum | News | Comments

A new type of catalyst, based on carbon, can facilitate two opposite reactions: electrolysis of water and combustion of hydrogen with oxygen. This bi-functionality, developed by researchers in Germany, is made possible from its construction: manganese-oxide or cobalt-oxide nanoparticles which are embedded in specially modified carbon, then integrated with nitrogen atoms in specific positions.

Advertisement

Using sand to improve battery performance

July 8, 2014 7:43 pm | by Sean Nealon, Univ. of California, Riverside | News | Comments

Researchers at the Univ. of California, Riverside have used a quartz-rich material to fabricate a lithium-ion battery that outperforms the current industry standard by three times. This key material? Sand. Through a heating process with salt and magnesium, the scientists created a porous nano-silicon sponge that greatly increases active surface area.  

Highly reactive gold carbene complex shines in emerald green

July 8, 2014 1:09 pm | News | Comments

With a chemical “trick”, scientists in Germany have succeeded in isolating a stable gold carbene complex. Experts have been proposing gold carbenes as essential short-lived intermediates in catalytic reactions, but they elude study because of their high reactivity. Chemist Prof. Dr. Bernd F. Straub and his team are the first to have created the basis for directly examining the otherwise unstable gold-carbon double bond.

New research shows that friction and fracture are interrelated

July 8, 2014 12:51 pm | News | Comments

Overturning conventional wisdom stretching all the way to Leonardo da Vinci, new research from Israel shows that how things break and how things slide are closely interrelated. The breakthrough study marks an important advance in understanding friction and fracture, with implications for describing the mechanics that drive earthquakes.

Silicon sponge improves lithium-ion battery performance

July 8, 2014 10:20 am | News | Comments

Researchers at Pacific Northwest National Laboratory have developed a porous material to replace the graphite traditionally used in a battery's electrodes. Made from silicon, which has more than 10 times the energy storage capacity of graphite, the sponge-like material can help lithium-ion batteries store more energy and run longer on a single charge.

Consider the “anticrystal”

July 7, 2014 3:12 pm | News | Comments

For the last century, the concept of crystals has been a mainstay of solid-state physics. Crystals are paragons of order; crystalline materials are defined by the repeating patterns their constituent atoms and molecules make. Now physicists have evidence that a new concept should undergird our understanding of most materials: the anticrystal, a theoretical solid that is completely disordered.

With "ribbons" of graphene, width matters

July 7, 2014 9:39 am | by Laura L. Hunt, UW-Milwaukee | News | Comments

Using graphene ribbons just several atoms across, a group of researchers at the Univ. of Wisconsin-Milwaukee has found a novel way to “tune” the material, causing the extremely efficient conductor of electricity to act as a semiconductor. By imaging the ribbons with scanning-tunneling microscopy, researchers have confirmed how narrow the ribbon width must be. Achieving less than 10 nm in width is a big challenge.

Japanese gold leaf artists worked on the nanoscale

July 2, 2014 3:10 pm | News | Comments

Ancient Japanese gold leaf artists were truly masters of their craft. An analysis of six of these Japanese paper screens show that these artifacts are gilded with gold leaf that was hand-beaten to the nanometer scale. The study was able to prove this without any damage to the screens through the use of x-ray fluorescence spectroscopy.

Toward a new way to keep electronics from overheating

July 2, 2014 1:05 pm | News | Comments

Using something called a microchannel heat sink to simulate the warm environment of a working computer, researchers in Malaysia have analyzed three nanofluids for the traits that are important in an effective coolant. The results of their study show that the nanofluids, which are made of metallic nanoparticles that have been added to a liquid, such as water, all performed better than water as coolants, with one mixture standing out.

Nature of solids and liquids explored through new pitch drop experiment

July 2, 2014 12:47 pm | News | Comments

Known as the “world's longest experiment”, an experiment at the University of Queensland in Australia was famous for taking ten years for a drop of pitch, a black, sticky material, to fall from a funnel. A new test in the U.K. is using a different bitumen, or pitch, which is 30 times less viscous than the Queensland experiment, so that the flow can be seen at a faster rate and hopefully provide more insights.

New NIST metamaterial gives light a one-way ticket

July 2, 2014 11:58 am | News | Comments

The light-warping structures known as metamaterials have a new trick in their ever-expanding repertoire. Researchers at NIST have built a silver, glass and chromium nanostructure that can all but stop visible light cold in one direction while giving it a pass in the other. The device could someday play a role in optical information processing and in novel biosensing devices.

Inspired by nature, researchers create tougher metal materials

July 2, 2014 11:56 am | News | Comments

Materials science experts in North Carolina and China collaborated on work that drew inspiration from the structure of bones and bamboo. The team has found that by gradually changing the internal structure of metals, stronger, tougher materials can be created and customized for a wide variety of applications, from body armor to automobile parts. The gradient structure concept works on numerous metals, including stainless steel and nickel.

Separating finely mixed oil and water

July 1, 2014 11:51 am | by David L. Chandler, MIT News Office | News | Comments

Whenever there is a major spill of oil into water, the two tend to mix into a suspension of tiny droplets, called an emulsion, that is extremely hard to separate and can cause severe damage to ecosystems. A new membrane developed by Massachusetts Institute of Technology researchers can separate even these highly mixed fine oil-spill residues.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading