Advertisement
Materials Science
Subscribe to Materials Science
View Sample

FREE Email Newsletter

Regenerating plastic grows back after damage

May 9, 2014 8:08 am | by Liz Ahlberg, Physical Sciences Editor, Univ. of Illinois, Urbana-Champaign | News | Comments

Looking at a smooth sheet of plastic in one Univ. of Illinois laboratory, no one would guess that an impact had recently blasted a hole through it. Illinois researchers have developed materials that not only heal, but regenerate. Until now, self-repairing materials could only bond tiny microscopic cracks. The new regenerating materials fill in large cracks and holes by regrowing material.

Detecting trace amounts of explosives with light

May 8, 2014 11:12 am | News | Comments

Research in Australia may help in the fight against terrorism with the creation of a sensor that can detect tiny quantities of explosives with the use of light and special glass fibers. The researchers have created a new optical fiber sensor which can detect explosives in concentrations as low as 6.3 ppm (parts per million). It requires an analysis time of only a few minutes.

Physicists show unlimited heat conduction in graphene

May 8, 2014 9:22 am | News | Comments

Based on recent experiments and computer simulations, scientists at the Max Planck Institute for Polymer Research and the National Univ. of Singapore have attested that the thermal conductivity of graphene diverges with the size of the samples. This discovery challenges the fundamental laws of heat conduction for extended materials.

Advertisement

New IBM memory card combines flash with phase-change materials

May 7, 2014 2:27 pm | by Chris Sciacca, IBM Research - Zurich | News | Comments

First proposed for memory in the 1970s, phase-change materials exhibit two metastable states which can store data when placed between two electrically conducting electrodes. IBM researchers in Zurich have recently used them as part of Project Theseus to develop a PCI-e card that melds flash memory with phase-change memory. The major improvement in speed interests IBM for Big Data applications.

Energy device for flexible electronics packs a lot of power

May 7, 2014 9:28 am | News | Comments

While flexible gadgets such as “electronic skin” and roll-up touch screens are moving ever closer to reality, their would-be power sources are either too wimpy or too stiff. But that’s changing fast. Scientists have developed a new device that’s far thinner than paper, can flex and bend, and store enough energy to provide critical back-up power for portable electronics.

Students build carbon nanostructures in hypergravity

May 7, 2014 9:24 am | News | Comments

An experiment sponsored for students by the European Space Agency has recently shown that carbon nanomaterials are built differently under conditions of hypergravity. They found that there was a distinct change in nanostructures that were built at 1g , 6g and 15g. Both surface growth and volume growth were observed at the higher gravity levels.

Nanocellulose sponges to combat oil pollution

May 6, 2014 11:10 am | News | Comments

A new, absorbable material could be of assistance in future oil spill accidents. A chemically modified nanocellulose sponge, the light material developed at a research laboratory in Europe absorbs the oil spill, remains floating on the surface and can then be recovered. The absorbent can be produced in an environmentally friendly manner from recycled paper, wood or agricultural by-products.

Engineering better machines and buildings by understanding mechanics of materials

May 6, 2014 11:01 am | News | Comments

Sandia National Laboratories is working to fill gaps in the fundamental understanding of materials science through an ambitious long-term, multidisciplinary project called Predicting Performance Margins (PPM). Since 2010, PPM has been helping to identify how material variability affects performance margins for engineering components. The goal, says Sandia experts, is a science-based foundation for materials design and analysis.

Advertisement

Genetic approach helps design broadband metamaterial

May 6, 2014 7:58 am | by A'ndrea Elyse Messer, Penn State Univ. | News | Comments

A specially formed material that can provide custom broadband absorption in the infrared can be identified and manufactured using "genetic algorithms," according to Penn State Univ. engineers, who say these metamaterials can shield objects from view by infrared sensors, protect instruments and be manufactured to cover a variety of wavelengths.

Taking the lead out of a promising solar cell

May 6, 2014 7:32 am | News | Comments

Northwestern Univ. researchers are the first to develop a new solar cell with good efficiency that uses tin instead of lead perovskite as the harvester of light. The low-cost, environmentally friendly solar cell can be made easily using "bench" chemistry, with no fancy equipment or hazardous materials.

Engineers develop basis for electronics that stretch at the molecular level

May 5, 2014 11:37 am | News | Comments

Current approaches to flexible electronics, in which very thin semiconductor materials are applied to a thin, flexible substrate in wavy patterns and then applied to a deformable surface such as skin or fabric, are still built around hard composite materials that limit their elasticity. Researchers in California have made several discoveries, however, that could lead to electronics that are "molecularly stretchable."

Paper examines clues for superconductivity in an iron-based material

May 5, 2014 10:12 am | by Ron Walli, Oak Ridge National Laboratory Communications | News | Comments

For the first time, scientists have a clearer understanding of how to control the appearance of a superconducting phase in a material, adding crucial fundamental knowledge and perhaps setting the stage for advances in the field of superconductivity. The paper focuses on a calcium-iron-arsenide single crystal, which has structural, thermodynamic and transport properties that can be varied through carefully controlled synthesis.

Innovative imaging technique clarifies molecular self-assembly

May 5, 2014 9:50 am | News | Comments

Super-resolution microscopy has allowed optical imaging of objects with dimensions smaller than the diffraction limit. Researchers studying a type of material called supramolecular polymers have used this type of imaging to develop a new technique that allows them study molecular self-assembly at an unprecedented level of detail.

Advertisement

New mathematical framework characterizes graphene’s shape

May 5, 2014 8:51 am | News | Comments

Scientists studying graphene’s properties are using a new mathematical framework to make extremely accurate characterizations of the 2-D material’s shape. The framework, called discrete differential geometry, is the geometry of 2-D interlaced structures called meshes. When the nodes of the structure correspond with atomic positions, this geometry provides direct information about chemistry and electrical properties.

Probing dopant distribution

May 5, 2014 7:45 am | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

The icing on the cake for semiconductor nanocrystals that provide a non-damped optoelectronic effect may exist as a layer of tin that segregates near the surface. One method of altering the electrical properties of a semiconductor is by introducing impurities called dopants. A team of researchers has demonstrated that equally important as the amount of dopant is how the dopant is distributed on the surface and throughout the material.

Self-healing smart beads detect and repair corrosion

May 2, 2014 2:41 pm | News | Comments

Scientists at Battelle have developed a tiny bead that not only detects corrosion but delivers a payload to help heal the microscopic cracks that rust creates. Called the Battelle Smart Corrosion Detector, the beads look like a fine, whitish powder that can be mixed with coatings used to protect pipelines and other critical infrastructure subject to corrosion. Self-activating, they release a proprietary chemical that fills cracks.

Edgy look at 2-D molybdenum disulfide

May 2, 2014 7:50 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

The drive to develop ultra-small and ultra-fast electronic devices using a single atomic layer of semiconductors, such as transition metal dichalcogenides, has received a significant boost. Researchers with Lawrence Berkeley National Laboratory have recorded the first observations of a strong nonlinear optical resonance along the edges of a single layer of molybdenum disulfide.

R&D 100 featured winner: RTI’s NLite nanofiber lighting technology

May 1, 2014 8:56 am | Videos | Comments

Of all the electricity generated in the U.S., more than quarter is consumed by lighting. In 2010, North Carolina’s RTI International launched a new product, NLite, intended to help alleviate this burden by improving the reflectance performance of power-intensive lighting devices such as luminaires and liquid crystal displays. The technology, based on nanofiber reflectance polymers, won a 2011 R&D 100 Award.

Playing pool with carbon atoms

May 1, 2014 8:14 am | by Daniel Stolte, Univ. of Arizona Relations | News | Comments

A Univ. of Arizona-led team of physicists has discovered how to change the crystal structure of graphene with an electric field, an important step toward the possible use of graphene in microprocessors that would be smaller and faster than current, silicon-based technology.

New fluorescent hybrid material changes color according to light direction

April 30, 2014 2:39 pm | News | Comments

Researchers in Spain have developed a highly fluorescent hybrid material that changes color depending on the polarization of the light that it is illuminated by. They achieved this with a perfect fit between an inorganic nanostructure and dye molecules.

Flexible pressure-sensor film shows how much force a surface “feels”

April 30, 2014 11:43 am | News | Comments

A newly developed pressure sensor could help car manufacturers design safer automobiles and even help Little League players hold their bats with a better grip, scientists report. The study describing their high-resolution sensor, which can be painted onto surfaces or built into gloves, appears in Nano Letters.

Solving a mystery of thermoelectrics

April 30, 2014 10:16 am | by David L. Chandler, MIT News Office | News | Comments

Materials that can be used for thermoelectric devices have been known for decades. But, until now, there has been no good explanation for why just a few materials work well for these applications, while most others do not. Now researchers say they have finally found a theoretical explanation for the differences, which could lead to the discovery of new, improved thermoelectric materials.

Harnessing magnetic vortices for making nanoscale antennas

April 30, 2014 8:25 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Scientists at Brookhaven National Laboratory are seeking ways to synchronize the magnetic spins in nanoscale devices to build tiny yet more powerful signal-generating or receiving antennas and other electronics. Their latest work shows that stacked nanoscale magnetic vortices separated by a thin layer of copper can be driven to operate in unison, potentially producing a powerful signal that could be put to work in new electronics.

New material for flat semiconductors

April 30, 2014 7:49 am | by David L. Chandler, MIT News Office | News | Comments

Researchers around the world have been working to harness the unusual properties of graphene, a 2-D sheet of carbon atoms. But graphene lacks one important characteristic that would make it even more useful: a property called a bandgap, which is essential for making devices such as computer chips and solar cells.

New production method for transparent conductive films is eco-friendly

April 29, 2014 11:40 am | News | Comments

Transparent conductive (TCO) films, present in tablets, laptops, flat screens and solar cells, are now an integral part of our lives. Yet they are expensive and complex to manufacture. Researchers in Europe have recently succeeded in developing a method of producing TCO films that relies on molecular self-organization. The technique is cheaper, simpler and more environmentally friendly than the traditional sputtering approach.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading