Advertisement
Materials Science
Subscribe to Materials Science
View Sample

FREE Email Newsletter

Researchers trap light, improve laser potential of MEH-PPV polymer

March 21, 2013 8:33 am | News | Comments

Researchers from North Carolina State University have come up with a low-cost way to enhance a polymer called MEH-PPV's ability to confine light, advancing efforts to use the material to convert electricity into laser light for use in photonic devices.

X-ray laser explores how to write data with light

March 21, 2013 7:52 am | News | Comments

Using laser light to read and write magnetic data by quickly flipping tiny magnetic domains could help keep pace with the demand for faster computing devices. Now experiments with SLAC National Accelerator Laboratory's Linac Coherent Light Source X-ray laser have given scientists their first detailed look at how light controls the first trillionth of a second of this process, known as all-optical magnetic switching.

Magnetic nano-droplet discovery presents telecom opportunity

March 20, 2013 5:06 pm | News | Comments

A team that includes researchers from Sweden has successfully created a magnetic soliton, a spin torque-generated nano-droplet that could lead to technological innovation in such areas as mobile telecommunications. This construct was first theorized 35 years ago and scientists have long believed that they exist in magnetic environments, but until now they had never been observed

Advertisement

Research shows potential for quasicrystals

March 20, 2013 9:45 am | by Ariel DuChene, Syracuse University | News | Comments

Quasiperiodic structures, or quasicrystals, because of their unique ordering of atoms and a lack of periodicity, possess remarkable crystallographic, physical and optical properties not present in regular crystals. Researchers at Syracuse University have recently authored a paper that presents the history of quasicrystals and how this area can open up numerous opportunities in fundamental optics research.

New flash memory combines graphene and molybdenite

March 20, 2013 9:09 am | News | Comments

Two years ago, a research team in Switzerland revealed the promising electronic properties of molybdenite, a mineral that is abundant in nature. Several months later, they demonstrated the possibility of building an efficient molybdenite chip. Today, they've combined two materials with advantageous electronic properties—graphene and molybdenite—into a promising flash memory prototype.

Researchers use simple sonochemical method to synthesize zinc oxide nanostructures

March 20, 2013 7:51 am | News | Comments

A research team from the U.S., Iran, and Malaysia has produced of zinc oxide nanostructures by using zinc acetate as the initiator through a new, fast, and simple sonochemical method. The chemicals required for the synthesis of zinc oxide include zinc acetate salt, sodium hydroxide, and ammonia solution without the need to other structure controlling agents or surfactants. It does not require high temperature or highly toxic materials.

Metamaterial with adjustable optical properties

March 19, 2013 10:42 am | News | Comments

Photonic metamaterials are artificial materials created by precise and extremely fine structuring of conventional media using nanotechnology. However, the properties of metamaterials are usually fixed. Researchers in the U.K. have created an artificial material, a metamaterial, with optical properties that can be controlled by electric signals.

Cuprate superconductors defy convention

March 19, 2013 10:35 am | News | Comments

In physics, Luttinger’s theorem states that the number of electrons in a material is the same as the number of electrons in all of its atoms added together. But physicists at the University of Illinois and the University of Pennsylvania found that for copper-containing superconductors, known as cuprates, electrons are not enough to carry the current

Advertisement

3D printing turns models into reality

March 19, 2013 10:23 am | by Steve Koppes, University of Chicago | News | Comments

Professor Heinrich Jaeger's laboratory at the University of Chicago uses 3D printing to test complex qualities and phenomona of shapes made via computer. One such phenomenon is jamming, in which aggregates of randomly placed particles, including spheres or more complicated shapes, or even molecules, transition from fluid-like to solid-like behavior. Recent analysis shows how the properties of a jammed material can be tuned by changing the shape of the constituent particles.  

Honeycomb nets from bismuth cubes

March 19, 2013 8:07 am | News | Comments

Researchers from Dresden have discovered a new material that conducts electric currents without loss of power over its edges and remains an insulator in its interior. The material is made out of bismuth cubes packed in a honeycomb motif that is known from the graphene structure. As opposed to graphene, the new material exhibits its peculiar electrical property at room temperature, giving it promise for applications in nanoelectronics.

Researchers synthesize negative-charge carrying molecular structures

March 18, 2013 4:24 pm | News | Comments

University of Oregon chemists have synthesized organic molecular structures that move both positive and negative electrical charges—a highly desired but often difficult combination to achieve in current efforts to create highly flexible electronic devices and other new-age technologies.

Researchers improve laser potential of MEH-PPV polymer

March 18, 2013 1:45 pm | News | Comments

MEH-PPV is a low-cost polymer that can be integrated with silicon chips, and researchers have sought to use it to convert electricity into laser light for use in photonic devices. However, attempts to do this have failed because the amount of electricity needed to generate laser light in MEH-PPV was so high that it caused the material to degrade. Researchers have recently come up with a low-cost way to enhance MEH-PPV’s ability to confine light, protecting the material.

Peratech working on “nose in clothes" for wearable electronics

March 18, 2013 10:49 am | News | Comments

Touch technology company is working with the London College of Fashion, University of the Arts London to develop wearable electronics that use Peratech's QTC sensors. This years-long research project is exploring the needs base and applications for wearable technology bringing together the expertise of industry and academe in a highly creative way.

Advertisement

Scientists create flexible mineral inspired by deep-sea sponges

March 15, 2013 11:10 am | News | Comments

Imitating the structural elements found in most sea sponges, researchers in Germany have created a new synthetic hybrid material that is extremely flexible yet has a mineral content of almost 90%. They recreated the sponge’s spicules using natural calcium carbonate and integrated a protein of the sponge. The invention is even more flexible than its natural counterpart.

Metasurfaces to usher in new optical technologies

March 15, 2013 10:25 am | News | Comments

New optical technologies using "metasurfaces" capable of the ultra-efficient control of light are nearing commercialization. According to Alexander Kildishev, an electrical engineer and professor at Purdue University, the metasurfaces could make possible "planar photonics" devices and optical switches small enough to be integrated into computer chips for information processing and telecommunication

Researchers create nanoscale spinning magnetic droplets

March 15, 2013 9:13 am | News | Comments

Researchers have successfully created a magnetic soliton—a nanosized, spinning droplet that was first theorized 35 years ago. These solitons have implications for the creation of magnetic, spin-based computers. Solitons are waves, localized in space, that preserve their size and momentum. They were first observed in water. Solitons composed of light have proved useful for long-distance, high-speed information transmission. But droplet solitons had never been observed in a magnetic environment, although scientists believed they could exist there.

Building stronger, greener concrete with biofuel byproducts

March 14, 2013 1:30 pm | News | Comments

Kansas State University civil engineers are developing the right mix to reduce concrete's carbon footprint and make it stronger. Their innovative ingredient: biofuel byproducts.

New gel material releases drug under patient’s pressure

March 14, 2013 10:39 am | News | Comments

A research team at the National Institute of Materials Science in Japan has recently developed a gel material which is capable of releasing drugs in response to pressure applied by the patient. Three fingers applying force to the site of the gel produces an effect for up to three days. They built the new drug from two materials already used in pharmaceuticals: a saccharide and a natural component of algae.

Organic phototransistors to help miniaturization of optoelectronics

March 13, 2013 12:55 pm | News | Comments

Phototransistors are a kind of transistors in which the incident light intensity can modulate the charge-carrier density in the channel. To date, research on organic phototransistors (OPT) has mostly focused on thin-film variants. Now, researchers in South Korea have developed high-performance OPTs that are engineered with nanoscale single-crystalline wires. The breakthrough could enable other types of device miniaturization.

Beach sand-encapsulated paraffin stores heat from the sun

March 13, 2013 10:50 am | News | Comments

The search for sustainable new materials to store heat captured from the sun for release during the night has led scientists to a high-tech combination of paraffin wax and sand.

Surprising control over photoelectrons from a topological insulator

March 13, 2013 10:17 am | News | Comments

Electrons flowing swiftly across the surface of topological insulators are "spin polarized," their spin and momentum locked. This new way to control electron distribution in spintronic devices makes TIs a hot topic in materials science. Now scientists have discovered more surprises: contrary to assumptions, the spin polarization of photoemitted electrons from a topological insulator is wholly determined in three dimensions by the polarization of the incident light beam.

Scientists use DNA to create nano-encrypted Morse code

March 12, 2013 3:17 pm | News | Comments

Researchers at the University of Illinois at Urbana-Champaign have devised a dynamic and reversible way to assemble nanoscale structures and have used it to encrypt a Morse code message. The team started with a template of DNA origami―multiple strands of DNA woven into a tile. They “wrote” their message in the DNA template by attaching biotin-bound DNA strands to specific locations on the tiles that would light up as dots or dashes. 

Super nanowire composite solves “valley of death” riddle

March 12, 2013 3:03 pm | News | Comments

In a world first, a team of researchers from Australia, China, and the U.S. has created a super strong metallic composite by harnessing the extraordinary mechanical properties of nanowires. According to the study’s authors, the work has effectively overcome a challenge that has frustrated the world's top scientists and engineers for more than three decades, nicknamed the "valley of death" in nanocomposite design.

Research shows how earthquakes can impact fire safety in buildings

March 11, 2013 4:32 pm | News | Comments

Damage to building structural elements, elevators, stairs, and fire protection systems caused by the shaking from a major earthquake can play a critical role in the spread of fire and hamper the ability of occupants to evacuate, and impede fire departments in their emergency response operations. These are among the conclusions of a groundbreaking study of post-earthquake building fire performance conducted in 2012 at the Worcester Polytechnic Institute (WPI).

Graphene researchers create superheated water that can corrode diamonds

March 11, 2013 10:11 am | News | Comments

A team of researchers from the National University of Singapore (NUS) has successfully altered the properties of water, making it corrosive enough to etch diamonds. This strange result was achieved by attaching a layer of graphene on diamond and heated to high temperatures. Water molecules trapped between them become highly corrosive, as opposed to normal water.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading