Advertisement
Materials Science
Subscribe to Materials Science
View Sample

FREE Email Newsletter

Manipulating nanoribbons at the molecular level

January 12, 2015 12:44 pm | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

Narrow strips of graphene called nanoribbons exhibit extraordinary properties that make them important candidates for future nanoelectronic technologies. A barrier to exploiting them, however, is the difficulty of controlling their shape at the atomic scale, a prerequisite for many possible applications.

Novel superconducting hybrid crystals developed

January 12, 2015 11:39 am | by Gertie Skaarup, Niels Bohr Institute | News | Comments

A new type of nanowire crystals that fuses semiconducting and metallic materials on the atomic scale could lay the foundation for future semiconducting electronics. Researchers at the Univ. of Copenhagen are behind the breakthrough, which has great potential. The development and quality of extremely small electronic circuits are critical to how and how well future computers and other electronic devices will function.

Atomic placement of elements counts for strong concrete

January 9, 2015 8:20 am | by Mike Williams, Rice Univ. | News | Comments

Even when building big, every atom matters, according to new research on particle-based materials at Rice Univ. Rice researchers have published a study showing what happens at the nanoscale when “structurally complex” materials like concrete rub against each other. The scratches they leave behind can say a lot about their characteristics.

Advertisement

Compact batteries enhanced by spontaneous silver matrix formations

January 9, 2015 7:40 am | by Justin Eure, Brookhaven National Laboratory | News | Comments

In a promising lithium-based battery, the formation of a highly conductive silver matrix transforms a material otherwise plagued by low conductivity. To optimize these multi-metallic batteries, scientists needed a way to see where, when and how these silver, nanoscale "bridges" emerge. Now, researchers have used x-rays to map this changing atomic architecture and revealed its link to the battery's rate of discharge.

Honeybee hive sealant promotes hair growth in mice

January 7, 2015 2:58 pm | by American Chemical Society | News | Comments

Hair loss can be devastating for the millions of men and women who experience it. Now scientists are reporting that a substance from honeybee hives might contain clues for developing a potential new therapy. They found that the material, called propolis, encouraged hair growth in mice. The study appears in the Journal of Agricultural and Food Chemistry.

Cheap asphalt provides “green” carbon capture

January 7, 2015 10:29 am | by Mike Williams, Rice Univ. | News | Comments

The best material to keep carbon dioxide from natural gas wells from fouling the atmosphere may be a derivative of asphalt, according to Rice Univ. scientists. The Rice laboratory of chemist James Tour followed up on last year’s discovery of a “green” carbon capture material for wellhead sequestration with the news that an even better compound could be made cheaply in a few steps from asphalt.

Nanowire clothing could keep people warm

January 7, 2015 9:26 am | by American Chemical Society | News | Comments

To stay warm when temperatures drop outside, we heat our indoor spaces—even when no one is in them. But scientists have now developed a novel nanowire coating for clothes that can both generate heat and trap the heat from our bodies better than regular clothes. They report on their technology, which could help us reduce our reliance on conventional energy sources, in Nano Letters.

High-temperature superconductor “fingerprint” found

January 7, 2015 8:06 am | by Anne Ju, Cornell Univ. | News | Comments

Theorists and experimentalists working together at Cornell Univ. may have found the answer to a major challenge in condensed matter physics: identifying the smoking gun of why “unconventional” superconductivity occurs, they report in Nature Physics.

Advertisement

Responsive material could be the “golden ticket” of sensing

January 7, 2015 7:45 am | by Univ. of Cambridge | News | Comments

Researchers from the Univ. of Cambridge have developed a new self-assembled material, which, by changing its shape, can amplify small variations in temperature and concentration of biomolecules, making them easier to detect. The material, which consists of synthetic spheres “glued” together with short strands of DNA, could be used to underpin a new class of biosensors, or form the basis for new drug delivery systems.

Freshman-level chemistry solves the solubility mystery of graphene oxide films

January 5, 2015 3:21 pm | by Amanda Morris, Northwestern Univ. | News | Comments

A Northwestern Univ.-led team recently found the answer to a mysterious question that has puzzled the materials science community for years—and it came in the form of some surprisingly basic chemistry. Like many scientists, Jiaxing Huang didn't understand why graphene oxide films were highly stable in water.

Researchers synthesize lead sulfide nanocrystals of uniform size

January 5, 2015 10:26 am | by Massachusetts Institute of Technology | News | Comments

Lead sulfide nanocrystals suitable for solar cells have a nearly one-to-one ratio of lead to sulfur atoms, but Massachusetts Institute of Technology (MIT) researchers discovered that to make uniformly sized quantum dots, a higher ratio of lead to sulfur precursors—24 to 1—is better.

Renewable bioplastics made from squid proteins

December 18, 2014 2:33 pm | News | Comments

At Penn State, a group led by Melik Demirel, professor of engineering science and mechanics, is designing a biodegradable plastic from structural proteins that could help clean up the world's oceans and solve an interesting set of other problems along the way.

Microscopy pencils patterns in polymers at the nanoscale

December 17, 2014 2:50 pm | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Scientists have used advanced microscopy to carve out nanoscale designs on the surface of a new class of ionic polymer materials for the first time. The study provides new evidence that atomic force microscopy, or AFM, could be used to precisely fabricate materials needed for increasingly smaller devices.

Advertisement

Turning hydrogen into “graphene”

December 16, 2014 2:13 pm | by Carnegie Institute | News | Comments

New work from Carnegie Institute's Ivan Naumov and Russell Hemley delves into the chemistry underlying some surprising recent observations about hydrogen, and reveals remarkable parallels between hydrogen and graphene under extreme pressures.

Carbon-trapping “sponges” can cut greenhouse gases

December 16, 2014 8:56 am | by Anne Ju, Cornell Univ. | News | Comments

In the fight against global warming, carbon capture is gaining momentum, but standard methods are plagued by toxicity, corrosiveness and inefficiency. Using a bag of chemistry tricks, Cornell Univ. materials scientists have invented low-toxicity, highly effective carbon-trapping “sponges” that could lead to increased use of the technology.

New algorithm a Christmas gift to 3-D printing

December 15, 2014 2:23 pm | by Carol Thorbes, Univ. Communications, Simon Fraser Univ. | News | Comments

Just in time for Christmas, Simon Fraser Univ. computing science professor Richard Zhang reveals how to print a 3-D Christmas tree efficiently and with zero material waste, using the world’s first algorithm for automatically decomposing a 3-D object into what are called pyramidal parts. A pyramidal part has a flat base with the remainder of the shape forming upwards over the base with no overhangs, much like a pyramid.

New findings could point the way to “valleytronics”

December 15, 2014 1:41 pm | by David L. Chandler, MIT News Office | News | Comments

New findings could provide a pathway toward a kind of 2-D microchip that would make use of a characteristic of electrons other than their electrical charge, as in conventional electronics. The new approach is dubbed “valleytronics,” because it makes use of properties of an electron that can be depicted as a pair of deep valleys on a graph of their traits.

Uncovering the Secrets Governing CVD of Graphene

December 15, 2014 11:24 am | by Mark H. Wall, Thermo Fisher Scientific, Madison, Wisc., Robert M. Jacobberger, Dept. of Material Science and Engineering, Univ. of Wisconsin-Madison and Elena Polyakova, Graphene Laboratories, Ronkonkoma, N.Y. | Thermo Fisher Scientific | Articles | Comments

One major challenge currently facing the graphene industry is difficulty in controlling the quality of graphene sheets when produced over large areas using industrial scale techniques. The key to solving this challenge lies in gaining a thorough understanding of the synthetic methods used to fabricate macro-sized single-layer graphene films.

Squid supplies blueprint for printable thermoplastics

December 15, 2014 10:37 am | by Penn State Univ. | News | Comments

Squid, what is it good for? You can eat it and you can make ink or dye from it, and now a Penn State Univ. team of researchers is using it to make a thermoplastic that can be used in 3-D printing. The team looked at the protein complex that exists in the squid ring teeth (SRT). The naturally made material is a thermoplastic, but obtaining it requires a large amount of effort and many squid.

Stacking 2-D materials may lower cost of semiconductor devices

December 11, 2014 2:34 pm | by North Caroline State University | News | Comments

A team of researchers led by North Carolina State University has found that  stacking materials that are only one atom thick can create semiconductor junctions that transfer charge efficiently, regardless of whether the crystalline structure of the materials is mismatched.

Researchers show commonalities in how different glassy materials fail

December 9, 2014 7:59 am | News | Comments

Researchers at the University of Pennsylvania have now shown an important commonality that seems to extend through the range of glassy materials. They have demonstrated that the scaling between a glassy material’s stiffness and strength remains unchanged, implying a constant critical strain that these materials can withstand before catastrophic failure.

Uniform nanowire arrays for science, manufacturing

December 8, 2014 8:36 am | by Kris Bertness, NIST | News | Comments

Defect-free nanowires with diameters in the range of 100 nm hold significant promise for numerous in-demand applications. That promise can't be realized, however, unless the wires can be fabricated in large uniform arrays using methods compatible with high-volume manufacture. To date, that has not been possible for arbitrary spacings in ultra-high vacuum growth.

Physics mystery shows path to quantum transistors

December 8, 2014 8:01 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

An odd, iridescent material that's puzzled physicists for decades turns out to be an exotic state of matter that could open a new path to next-generation electronics. Physicists at the Univ. of Michigan have discovered or confirmed several properties of the compound samarium hexaboride that raise hopes for finding the silicon of the quantum era. They say their results also close the case of how to classify the material.

Nanoparticle allows low-cost creation of 3-D nanostructures

December 8, 2014 7:51 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. have developed a new lithography technique that uses nanoscale spheres to create 3-D structures with biomedical, electronic and photonic applications. The new technique is significantly less expensive than conventional methods and does not rely on stacking 2-D patterns to create 3-D structures.

Atomic “mismatch” creates nano “dumbbells”

December 5, 2014 9:55 am | by Jared Sagoff, Argonne National Laboratory | News | Comments

Like snowflakes, nanoparticles come in a wide variety of shapes and sizes. The geometry of a nanoparticle is often as influential as its chemical makeup in determining how it behaves, from its catalytic properties to its potential as a semiconductor component. Thanks to a new study, researchers are closer to understanding the process by which nanoparticles made of more than one material, called heterostructured nanoparticles, form.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading