Advertisement
Materials Science
Subscribe to Materials Science
View Sample

FREE Email Newsletter

Black phosphorous: A new wonder material for improving optical communication

March 3, 2015 9:18 am | by Lacey Nygard, Univ. of Minnesota | News | Comments

Phosphorus, a highly reactive element commonly found in match heads, tracer bullets and fertilizers, can be turned into a stable crystalline form known as black phosphorus. In a new study, researchers from the Univ. of Minnesota used an ultra-thin black phosphorus film, only 20 layers of atoms, to demonstrate high-speed data communication on nanoscale optical circuits.

Pens filled with high-tech inks for DIY sensors

March 3, 2015 9:06 am | by Ioana Patringenaru, Jacobs School of Engineering | Videos | Comments

A new simple tool developed by nanoengineers at the Univ. of California, San Diego, is opening the door to an era when anyone will be able to build sensors, anywhere. The team developed high-tech bio-inks that react with several chemicals, including glucose. They filled off-the-shelf ballpoint pens with the inks and were able to draw sensors to measure glucose directly on the skin and sensors to measure pollution on leaves.

Glass coating for improved battery performance

March 3, 2015 8:57 am | by Sean Nealon, Univ. of California, Riverside | News | Comments

Lithium-sulfur batteries have been a hot topic in battery research because of their ability to produce up to 10 times more energy than conventional batteries, which means they hold great promise for applications in energy-demanding electric vehicles. However, there have been fundamental road blocks to commercializing these sulfur batteries.

Advertisement

Analysis shows ion slowdown in fuel cell material

March 2, 2015 11:01 am | by David L. Chandler, MIT News Office | News | Comments

Dislocations in oxides such as cerium dioxide, a solid electrolyte for fuel cells, turn out to have a property that is the opposite of what researchers had expected, according to a new analysis. Researchers had thought that a certain kind of strain would speed the transport of oxygen ions through the material, potentially leading to the much faster diffusion that is necessary in high-performance solid-oxide fuel cells.

How to best harness solar power

March 2, 2015 10:48 am | by Dawn Fuller, Univ. of Cincinnati | News | Comments

A research partnership is reporting advances on how to make solar cells stronger, lighter, more flexible and less expensive when compared with the current silicon or germanium technology on the market. The researchers discovered how a blend of conjugated polymers resulted in structural and electronic changes that increased efficiency three-fold, by incorporating graphene in the active layer of the carbon-based materials.

Aerogel catalyst shows promise for fuel cells

March 2, 2015 7:54 am | by Mike Williams, Rice Univ. | News | Comments

Graphene nanoribbons formed into a 3-D aerogel and enhanced with boron and nitrogen are excellent catalysts for fuel cells, even in comparison to platinum, according to Rice Univ. researchers. A team led by materials scientist Pulickel Ajayan and chemist James Tour made metal-free aerogels from graphene nanoribbons and various levels of boron and nitrogen to test their electrochemical properties.

Research predicts when, how materials will act

February 26, 2015 12:09 pm | by Kathleen Haughney, Florida State Univ. | News | Comments

In science, it’s commonly known that materials can change in a number of ways when subjected to different temperatures, pressures or other environmental forces.  A material might melt or snap in half. And for engineers, knowing when and why that might happen is crucial information.  Now, a Florida State Univ. researcher has laid out an overarching theory that explains why certain materials act the way they do.

Building blocks of the future defy logic

February 26, 2015 11:58 am | by Cassi Camilleri, Univ. of Malta | News | Comments

Wake up in the morning and stretch; your midsection narrows. Pull on a piece of plastic at separate ends; it becomes thinner. So does a rubber band. One might assume that when a force is applied along an axis, materials will always stretch and become thinner. Wrong.

Advertisement

Warming up the world of superconductors

February 26, 2015 8:50 am | by Robert Perkins, Univ. of Southern California | News | Comments

A superconductor that works at room temperature was long thought impossible, but scientists at the Univ. of Southern California may have discovered a family of materials that could make it reality. The team found that aluminum "superatoms" appear to form Cooper pairs of electrons at temperatures around 100 K. Though 100 K is still pretty chilly, this is an increase compared to bulk aluminum metal.

Boosting carbon’s stability for better lithium-air batteries

February 25, 2015 9:15 am | by Ed Hayward, Boston College | News | Comments

To power a car so it can travel hundreds of miles at a time, lithium-ion batteries of the future are going to have to hold more energy without growing too big in size. That's one of the dilemmas confronting efforts to power cars through rechargeable battery technologies. In order to hold enough energy to enable a car trip of 300 to 500 miles before recharging, current lithium-ion batteries become too big or too expensive.

Ultra-thin nanowires can trap electron “twisters”

February 24, 2015 11:11 am | by Phil Sneiderman, Johns Hopkins Univ. | News | Comments

Superconductor materials are prized for their ability to carry an electric current without resistance, but this valuable trait can be crippled or lost when electrons swirl into tiny tornado-like formations called vortices. These disruptive mini-twisters often form in the presence of magnetic fields, such as those produced by electric motors.

Fibers made by transforming materials

February 20, 2015 8:26 am | by David L. Chandler, MIT News Office | News | Comments

Scientists have known how to draw thin fibers from bulk materials for decades. But a new approach to that old method, developed by researchers at Massachusetts Institute of Technology, could lead to a whole new way of making high-quality fiber-based electronic devices. The idea grew out of a long-term research effort to develop multifunctional fibers that incorporate different materials into a single long functional strand.

New technique developed for making graphene competitor, molybdenum disulphide

February 20, 2015 7:59 am | by Evan Lerner, Univ. of Pennsylvania | News | Comments

Graphene is often touted as a replacement for silicon in electronic devices due to its extremely high conductivity and unbeatable thinness. But graphene isn’t the only 2-D material that could play such a role. Univ. of Pennsylvania researchers have made an advance in manufacturing one such material, molybdenum disulphide.

Advertisement

Researchers develop a cost-effective, efficient rival for platinum

February 18, 2015 10:39 am | by Aalto Univ. | News | Comments

Researchers succeeded in creating an electrocatalyst that is needed for storing electric energy made of carbon and iron. A challenge that comes with the increased use of renewable energy is how to store electric energy. Platinum has traditionally been used as the electrocatalyst in electrolyzers that store electric energy as chemical compounds.

Paper-like material could boost electric vehicle batteries

February 18, 2015 8:58 am | by Sean Nealon, University of California, Riverside | News | Comments

Researchers at the Univ. of California, Riverside have developed a novel paper-like material for lithium-ion batteries. It has the potential to boost by several times the specific energy, or amount of energy that can be delivered per unit weight of the battery. This paper-like material is composed of sponge-like silicon nanofibers more than 100 times thinner than human hair.

New spin on spintronics

February 17, 2015 11:18 am | by Jason Socrates Bardi, American Institute of Physics | News | Comments

A team of researchers from the Univ. of Michigan and Western Michigan Univ. is exploring new materials that could yield higher computational speeds and lower power consumption, even in harsh environments. Most modern electronic circuitry relies on controlling electronic charge within a circuit, but this control can easily be disrupted in the presence of radiation, interrupting information processing.

Novel solid-state nanomaterial platform enables terahertz photonics

February 17, 2015 11:11 am | by Jason Socrates Bardi, American Institute of Physics | News | Comments

Compact, sensitive and fast nanodetectors are considered to be somewhat of a "Holy Grail" sought by many researchers around the world. And now a team of scientists in Italy and France has been inspired by nanomaterials and has created a novel solid-state technology platform that opens the door to the use of terahertz photonics in a wide range of applications.

The future of electronics could lie in material from the past

February 17, 2015 8:31 am | by Pam Frost Gorder, The Ohio State Univ. | News | Comments

The future of electronics could lie in a material from its past, as researchers from The Ohio State Univ. work to turn germanium, the material of 1940s transistors, into a potential replacement for silicon. At the American Association for the Advancement of Science meeting, Asst. Prof. of Chemistry Joshua Goldberger reported progress in developing a form of germanium called germanane.

Researchers synthesize material for efficient plasmonic devices in mid-infrared range

February 17, 2015 8:14 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

A research team led by North Carolina State Univ. has identified and synthesized a material that can be used to create efficient plasmonic devices that respond to light in the mid-infrared (IR) range. This is the first time anyone has demonstrated a material that performs efficiently in response to this light range, and it has applications in fields ranging from high-speed computers, to solar energy to biomedical devices.

New self-stretching material developed

February 13, 2015 2:23 pm | by Peter Iglinski, Univ. of Rochester | News | Comments

Although most materials slightly expand when heated, there is a new class of rubber-like material that not only self-stretches upon cooling; it reverts back to its original shape when heated, all without physical manipulation. The material is like a shape-memory polymer because it can be switched between two different shapes.

How iron feels the heat

February 13, 2015 1:34 pm | by Jessica Stoller-Conrad, Caltech | News | Comments

As you heat up a piece of iron, the arrangement of the iron atoms changes several times before melting. This unusual behavior is one reason why steel, in which iron plays a starring role, is so sturdy and ubiquitous in everything from teapots to skyscrapers. But the details of just how and why iron takes on so many different forms have remained a mystery.

Making a better wound dressing

February 13, 2015 10:18 am | by American Chemical Society | News | Comments

With a low price tag and mild flavor, tilapia has become a staple dinnertime fish for many Americans. Now it could have another use: helping to heal our wounds. In ACS Applied Materials & Interfaces, scientists have shown that a protein found in this fish can promote skin repair in rats without an immune reaction, suggesting possible future use for human patients.

Researchers glimpse distortions in atomic structure of materials

February 13, 2015 10:10 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. are using a technique they developed to observe minute distortions in the atomic structure of complex materials, shedding light on what causes these distortions and opening the door to studies on how such atomic-scale variations can influence a material's properties.

Exotic states materialize with supercomputers

February 13, 2015 9:03 am | by Jorge Salazar, TACC | News | Comments

Scientists used supercomputers to find a new class of materials that possess an exotic state of matter known as the quantum spin Hall effect. The researchers published their results in Science in December 2014, where they propose a new type of transistor made from these materials. The team calculated the electronic structures of the materials using the Stampede and Lonestar supercomputers of the Texas Advanced Computing Center.

Non-stick material joins portfolio of slippery surface technologies

February 10, 2015 4:16 pm | by Kat J. McAlpine, Wyss Institute for Biologically Inspired Engineering | News | Comments

More than 80% of microbial infections in the human body are caused by a build–up of bacteria, according to the National Institutes of Health. Bacteria cells gain a foothold in the body by accumulating and forming into adhesive colonies called biofilms, which help them to thrive and survive but cause infections and associated life–threatening risks to their human hosts.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading