Advertisement
Materials Science
Subscribe to Materials Science

The Lead

Engineering a better solar cell

May 1, 2015 7:57 am | by Renee Gastineau, Univ. of Washington | News | Comments

One of the fastest-growing areas of solar energy research is with materials called perovskites. These promising light harvesters could revolutionize the solar and electronics industries because they show potential to convert sunlight into electricity more efficiently and less expensively than today’s silicon-based semiconductors.

Scientists use nanoscale building blocks and DNA “glue” to shape 3-D superlattices

April 23, 2015 8:17 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Taking child's play with building blocks to a whole new level, the nanometer scale, scientists...

3D-printed aerogels improve energy storage

April 23, 2015 8:03 am | by Anne M. Stark, Lawrence Livermore National Laboratory | News | Comments

A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics,...

Electron spin brings order to high entropy alloys

April 22, 2015 10:01 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. have discovered that electron spin brings a...

View Sample

FREE Email Newsletter

Expanding the reach of metallic glass

April 22, 2015 9:53 am | by Jim Shelton, Yale Univ. | News | Comments

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape. Yale Univ. engineers have found a unique method for designing metallic glass nanostructures across a wide range of chemicals. The process will enable the fabrication of an array of new materials, with applications for everything from fuel cells to biological implants.

“Holey” graphene for energy storage

April 22, 2015 8:32 am | by Liezel Labios, Univ. of California, San Diego | News | Comments

Engineers at the Univ. of California, San Diego have discovered a method to increase the amount of electric charge that can be stored in graphene. The research may provide a better understanding of how to improve the energy storage ability of capacitors for potential applications in cars, wind turbines and solar power.

Phonons, arise!

April 22, 2015 8:16 am | by Neal Singer, Sandia National Laboratories | News | Comments

Modern research has found no simple, inexpensive way to alter a material’s thermal conductivity at room temperature. That lack of control has made it hard to create new classes of devices that use phonons, rather than electrons or photons, to harvest energy or transmit information. Phonons have proved hard to harness.

Advertisement

Engineered softwood could transform pulp, paper and biofuel industries

April 22, 2015 7:44 am | by Krista Eastman, Univ. of Wisconsin-Madison | News | Comments

Scientists have demonstrated the potential for softwoods to process more easily into pulp and paper if engineered to incorporate a key feature of hardwoods. The finding could improve the economics of the pulp, paper and biofuels industries and reduce those industries' environmental impact.

Invisible inks could help foil counterfeiters of all kinds

April 22, 2015 7:33 am | by Megan Fellman, Northwestern Univ. | News | Comments

Real or counterfeit? Northwestern Univ. scientists have invented sophisticated fluorescent inks that one day could be used as multicolored barcodes for consumers to authenticate products that are often counterfeited. Snap a photo with your smartphone, and it will tell you if the item is real and worth your money.

Electronic device performance enhanced with new transistor encasing method

April 21, 2015 7:50 am | by Austin Keating, News Bureau Intern, Univ. of Illinois, Urbana-Champaign | News | Comments

A more effective method for closing gaps in atomically small wires has been developed by Univ. of Illinois researchers, further opening the doors to a new transistor technology. Silicon-based transistors have been the foundation of modern electronics for more than half a century. A new transistor technology, carbon nanotube wires, shows promise in replacing silicon because it can operate ten times as fast and is more flexible.

Deadline Extended for 2015 R&D 100 Award Entries

April 20, 2015 1:53 pm | by Lindsay Hock, Editor | News | Comments

The editors of R&D Magazine have announced a deadline extension for the 2015 R&D 100 Awards entry process until May 18, 2015. The R&D 100 Awards have a 50 plus year history of awarding the 100 most technologically significant products of the year.

Engineers introduce design that mimics nature’s camouflage

April 20, 2015 8:22 am | by Scott Schrage, Univ. of Nebraska-Lincoln Communications | News | Comments

It can shift from red to green to violet. It can mimic patterns and designs. And it can do all of this in a flash, literally. The same qualities that define the cuttlefish, a sea dweller that uses its powers of dynamic camouflage to survive and communicate, also apply to a new engineering feat that behaves much like nature's master of disguise.

Advertisement

Liquid crystal bubbles experiment arrives at ISS

April 20, 2015 8:10 am | by Univ. of Colorado, Boulder | News | Comments

An experiment led by the Univ. of Colorado Boulder arrived at the International Space Station (ISS) and will look into the fluid dynamics of liquid crystals that may lead to benefits both on Earth and in space. A new physical science investigation on ISS, the Observation and Analysis of Smectic Islands in Space (OASIS), will examine the behavior of liquid crystals in microgravity.

Beyond the lithium ion

April 17, 2015 11:58 am | by Jeanne Galatzer-Levy, Univ. of Illinois, Chicago | News | Comments

The race is on around the world as scientists strive to develop a new generation of batteries that can perform beyond the limits of the current lithium-ion based battery. Researchers at the Univ. of Illinois at Chicago have taken a significant step toward the development of a battery that could outperform the lithium-ion technology used in electric cars such as the Chevy Volt.

Improving rechargeable batteries with MoS2 nano “sandwich”

April 17, 2015 9:00 am | by Jennifer Tidball, Kansas State Univ. | News | Comments

The key to better cell phones and other rechargeable electronics may be in tiny "sandwiches" made of nanosheets, according to mechanical engineering research from Kansas State Univ. The research team are improving rechargeable lithium-ion batteries. The team has focused on the lithium cycling of molybdenum disulfide, or MoS2, sheets, which Singh describes as a "sandwich" of one molybdenum atom between two sulfur atoms.

3D-Printed Optic Breakthroughs

April 16, 2015 2:20 pm | by Tim Studt | Articles | Comments

Just a few years ago, many researchers working in alternative manufacturing methods believed the basic layering technologies integral to 3D printing limited the capability of this technique to build quality optical devices and lenses. But, as rapidly evolving as these techniques are, and as broad ranging as the applications it’s infiltrating, this limitation has been surmounted by a number of research groups around the world.

Major advance in artificial photosynthesis poses win-win for the environment

April 16, 2015 12:43 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A potentially game-changing breakthrough in artificial photosynthesis has been achieved with the development of a system that can capture carbon dioxide emissions before they are vented into the atmosphere and then, powered by solar energy, convert that carbon dioxide into valuable chemical products, including biodegradable plastics, pharmaceutical drugs and even liquid fuels.

Advertisement

Novel nanoparticles could save soldiers’ lives after explosions

April 16, 2015 8:11 am | by American Chemical Society | News | Comments

Soldiers who suffer internal trauma from explosions might one day benefit from a new treatment now under development. Researchers report in ACS Macro Letters that injecting a certain type of nanoparticle helped reduce lung damage in rats experiencing such trauma. The potential treatment, which could be given at the most critical moment immediately after a blast, could save lives.

Researchers create bio-inspired flame retardants

April 15, 2015 9:53 am | by NIST | News | Comments

After devising several new and promising "green" flame retardants for furniture padding, NIST researchers took a trip to the grocery store and cooked up their best fire-resistant coatings yet. As important, these protective coatings can be made in one straightforward step.

Nano-coated mesh could clean oil spills

April 15, 2015 9:24 am | by Pam Frost Gorder, Ohio State Univ. | News | Comments

The mesh coating is among a suite of nature-inspired nanotechnologies under development at Ohio State and described in two papers in Nature Scientific Reports. Potential applications range from cleaning oil spills to tracking oil deposits underground.

Nanotubes with two walls have singular qualities

April 15, 2015 8:21 am | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. researchers have determined that two walls are better than one when turning carbon nanotubes into materials like strong, conductive fibers or transistors. Rice materials scientist Enrique Barrera and his colleagues used atomic-level models of double-walled nanotubes to see how they might be tuned for applications that require particular properties.

Technique could slash energy used to produce plastics

April 14, 2015 11:52 am | by Univ. of Colorado, Boulder | News | Comments

A new material developed at the Univ. of Colorado Boulder could radically reduce the energy needed to produce a wide variety of plastic products, from grocery bags and cling wrap to replacement hips and bulletproof vests. Approximately 80 million metric tons of polyethylene is produced globally each year, making it the most common plastic in the world.

Taking aircraft manufacturing out of the oven

April 14, 2015 8:03 am | by Jennifer Chu, MIT News Office | News | Comments

Composite materials used in aircraft wings and fuselages are typically manufactured in large, industrial-sized ovens: Multiple polymer layers are blasted with temperatures up to 750 F, and solidified to form a solid, resilient material. Using this approach, considerable energy is required first to heat the oven, then the gas around it, and finally the actual composite.

Long-sought magnetic mechanism observed in exotic hybrid materials

April 13, 2015 8:08 am | by Justin Eure, Brookhaven National Laboratory | News | Comments

Scientists have measured the subatomic intricacies of an exotic phenomenon first predicted more than 60 years ago. This so-called van Vleck magnetism is the key to harnessing the quantum quirks of topological insulators, and could lead to unprecedented electronics.

Material could boost batteries’ power, help power plants

April 13, 2015 7:43 am | by Paul Alongi, Clemson Univ. | News | Comments

You’re going to have to think very small to understand something that has the potential to be very big. A team of researchers developed a material that acts as a superhighway for ions. The material could make batteries more powerful, change how gaseous fuel is turned into liquid fuel and help power plants burn coal and natural gas more efficiently.

Plant cell structure discovery could lead to improved renewable materials

April 10, 2015 12:07 pm | by Univ. of Warwick | News | Comments

The step forward follows research by the Univs. of Warwick and Cambridge and the unexpected discovery of a previously unknown arrangement of molecules in plant cell walls. The researchers investigated the polymer xylan, which comprises a third of wood matter.

How complex carbon nanostructures form

April 9, 2015 4:46 pm | by Jeff Sossamon, Univ. of Missouri-Columbia | News | Comments

Carbon nanotubes (CNTs) are microscopic tubular structures that engineers “grow” through a process conducted in a high-temperature furnace. The forces that create the CNT structures known as “forests” often are unpredictable and are mostly left to chance. Now, a Univ. of Missouri researcher has developed a way to predict how these complicated structures are formed.

Ordinary clay can save the day

April 9, 2015 11:12 am | by Norwegian Univ. of Science and Technology | News | Comments

Carbon capture will play a central role in helping the nations of the world manage and reduce their greenhouse gas emissions. Many materials are being tested for the purpose of capturing carbon dioxide. But now researchers led by the Norwegian Univ. of Science and Technology have found that ordinary clay can work just as effectively as more advanced materials.

Mixing up a batch of stronger metals

April 9, 2015 8:09 am | by Katie Bethea, Oak Ridge National Laboratory | News | Comments

Just as a delicate balance of ingredients determines the tastiness of a cookie or cake, the specific ratio of metals in an alloy determines desirable qualities of the new metal, such as improved strength or lightness. A new class of alloys, called high entropy alloys, is unique in that these alloys contain five or more elements mixed evenly in near equal concentrations and have shown exceptional engineering properties.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading