Advertisement
Materials Science
Subscribe to Materials Science

The Lead

Protons fuel graphene prospects

November 26, 2014 9:11 am | by Univ. of Manchester | News | Comments

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, Univ. of Manchester researchers have found. Published in Nature, the discovery could revolutionize fuel cells and other hydrogen-based technologies as they require a barrier that only allow protons to pass through.

Researchers develop heat-conducting plastic

November 25, 2014 8:59 pm | by Nicole Casal Moore, Univ. of Michigan | News | Comments

The spaghetti-like internal structure of most plastics makes it hard for them to cast away heat...

Material snaps together like Legos

November 25, 2014 4:45 pm | by Brendan M. Lynch, KU News Service | News | Comments

Physicists at the Univ. of Kansas have fabricated an innovative substance from two different...

Testing the Limits of Indentation

November 25, 2014 4:26 pm | by Duanjie Li, PhD and Pierre Leroux, Nanovea | Articles | Comments

A tensile strength is a common materials test. Typical, a sample is subjected to controlled...

View Sample

FREE Email Newsletter

Researchers develop efficient method to produce nanoporous metals

November 25, 2014 10:42 am | by Kenneth Ma, LLNL | News | Comments

Nanoporous metals have a wide range of applications because of their superior qualities. They posses a high surface area for better electron transfer, which can lead to the improved performance of an electrode in an electric double capacitor or battery. Nanoporous metals offer an increased number of available sites for the adsorption of analytes, a highly desirable feature for sensors.

Improving technology used in digital memory

November 25, 2014 7:48 am | by Scott Schrage, University Communications, Univ. of Nebraska-Lincoln | News | Comments

The improvements in random access memory (RAM) that have driven many advances of the digital age owe much to the innovative application of physics and chemistry at the atomic scale. Accordingly, a team led by Univ. of Nebraska-Lincoln researchers has employed a Nobel Prize-winning material and common household chemical to enhance the properties of a component primed for the next generation of high-speed, high-capacity RAM.

Nanoparticles infiltrate, kill cancer cells from within

November 24, 2014 11:06 am | by Melanie Titanic-Schefft, Univ. of Cincinnati | News | Comments

Conventional treatment seeks to eradicate cancer cells by drugs and therapy delivered from outside the cell, which may also affect (and potentially harm) nearby normal cells. In contrast to conventional cancer therapy, a Univ. of Cincinnati team has developed several novel designs for iron-oxide based nanoparticles that detect, diagnose and destroy cancer cells using photo-thermal therapy (PTT).

Advertisement

Scientists do glass a solid

November 24, 2014 10:52 am | by New York Univ. | News | Comments

How does glass transition from a liquid to its familiar solid state? How does this common material transport heat and sound? And what microscopic changes occur when a glass gains rigidity as it cools? A team of researchers at New York Univ.'s Center for Soft Matter Research offers a theoretical explanation for these processes in Proceedings of the National Academy of Sciences.

Overcoming limitations of magnetic storage

November 24, 2014 7:49 am | by Emil Venere, Purdue Univ. | News | Comments

Researchers at Nano-Meta Technologies Inc. have shown how to overcome key limitations of a material that could enable the magnetic storage industry to achieve data-recording densities far beyond today's computers. The new technology could make it possible to record data on an unprecedented small scale using tiny "nanoantennas" and to increase the amount of data that can be stored on a standard magnetic disk by 10 to 100 times.

2-D quantum materials for nanoelectronics

November 21, 2014 9:10 am | by David L. Chandler, MIT News Office | News | Comments

Researchers at Massachusetts Institute of Technology say they have carried out a theoretical analysis showing that a family of 2-D materials exhibits exotic quantum properties that may enable a new type of nanoscale electronics. These materials are predicted to show a phenomenon called the quantum spin Hall (QSH) effect, and belong to a class of materials known as transition metal dichalcogenides, with layers a few atoms thick.

Collaboration points to improved nanomaterials

November 21, 2014 8:01 am | by Jim Barlow, Director of Science and Research Communications, Univ. of Oregon | News | Comments

A potential path to identify imperfections and improve the quality of nanomaterials for use in next-generation solar cells has emerged from a collaboration of Univ. of Oregon and industry researchers. To increase light-harvesting efficiency of solar cells beyond silicon's limit of about 29%, manufacturers have used layers of chemically synthesized semiconductor nanocrystals.

Argonne announces new licensing agreement with AKHAN Semiconductor

November 20, 2014 8:24 am | by Jared Sagoff, Argonne National Laboratory | News | Comments

Argonne National Laboratory has announced a new intellectual property licensing agreement with AKHAN Semiconductor, continuing a productive public-private partnership that will bring diamond-based semiconductor technologies to market. The agreement gives AKHAN exclusive rights to a suite of breakthrough diamond-based semiconductor inventions developed by nanoscientist Ani Sumant of Argonne’s Center for Nanoscale Materials.

Advertisement

Spiraling light, nanoparticles and insights into life’s structure

November 20, 2014 8:12 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

As hands come in left and right versions that are mirror images of each other, so do the amino acids and sugars within us. But unlike hands, only the left-oriented amino acids and the right-oriented sugars ever make into life as we know it. Scientists know the other varieties exist because when they synthesize these amino acids and sugars in a laboratory, roughly equal numbers of left- and right-facing arrangements form.

Graphene/nanotube hybrid benefits flexible solar cells

November 17, 2014 3:37 pm | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. scientists have invented a novel cathode that may make cheap, flexible dye-sensitized solar cells practical. The Rice laboratory of materials scientist Jun Lou created the new cathode, one of the two electrodes in batteries, from nanotubes that are seamlessly bonded to graphene and replaces the expensive and brittle platinum-based materials often used in earlier versions.

Solar-friendly form of silicon shines

November 17, 2014 11:16 am | by Carnegie Institute | News | Comments

Silicon is the second-most-abundant element in the Earth's crust. When purified, it takes on a diamond structure, which is essential to modern electronic devices—carbon is to biology as silicon is to technology. A team of Carnegie scientists has synthesized an entirely new form of silicon, one that promises even greater future applications.

Artificial muscle can “remember” movements

November 17, 2014 11:07 am | by Univ. of Cambridge | News | Comments

Researchers from the Univ. of Cambridge have developed artificial muscles which can learn and recall specific movements, the first time that motion control and memory have been combined in a synthetic material. The muscles, made from smooth plastic, could eventually be used in a applications where mimicking the movement of natural muscle would be an advantage, such as robotics, aerospace, exoskeletons and biomedical applications.

Motion-induced quicksand

November 17, 2014 7:45 am | by Jennifer Chu, MIT News Office | News | Comments

From a mechanical perspective, granular materials are stuck between a rock and a fluid place, with behavior resembling neither a solid nor a liquid. Think of sand through an hourglass: As grains funnel through, they appear to flow like water, but once deposited, they form a relatively stable mound, much like a solid.

Advertisement

New form of crystalline order holds promises for thermoelectric applications

November 14, 2014 9:36 am | by Vanderbilt Univ. | News | Comments

Since the 1850s scientists have known that crystalline materials are organized into fourteen different basic lattice structures. However, a team of researchers from Vanderbilt Univ. and Oak Ridge National Laboratory now reports that it has discovered an entirely new form of crystalline order that simultaneously exhibits both crystal and polycrystalline properties, which they describe as "interlaced crystals."

Topological insulators promising for spintronics, quantum computers

November 14, 2014 7:48 am | by Emil Venere, Purdue Univ. | News | Comments

Researches have uncovered "smoking-gun" evidence to confirm the workings of an emerging class of materials that could make possible "spintronic" devices and practical quantum computers far more powerful than today's technologies. The materials are called topological insulators.

2015 R&D 100 Awards entries now open

November 13, 2014 11:27 am | by Lindsay Hock, Managing Editor | News | Comments

The editors of R&D Magazine have announced the opening of the 2015 R&D 100 Awards entry process. The R&D 100 Awards have a 50 plus year history of awarding the 100 most technologically significant products of the year. Past winners have included sophisticated testing equipment, innovative new materials, chemistry breakthroughs, biomedical products, consumer items, high-energy physics and more.

New process isolates promising material

November 13, 2014 11:11 am | by Amanda Morris, Northwestern Univ. | News | Comments

After graphene was first produced in the laboratory in 2004, thousands of laboratories began developing graphene products worldwide. Researchers were amazed by its lightweight and ultra-strong properties. Ten years later, scientists now search for other materials that have the same level of potential.

New way to move atomically thin semiconductors for use in flexible devices

November 13, 2014 8:51 am | by Matt Shipman, News Services, North Carolina State Univ. | Videos | Comments

Researchers from North Carolina State Univ. have developed a new way to transfer thin semiconductor films, which are only one atom thick, onto arbitrary substrates, paving the way for flexible computing or photonic devices. The technique is much faster than existing methods and can perfectly transfer the atomic scale thin films from one substrate to others, without causing any cracks.

Study explains atomic action in high-temperature superconductors

November 13, 2014 7:43 am | by Andrew Gordon, SLAC National Accelerator Laboratory | News | Comments

A study at the SLAC National Accelerator Laboratory suggests for the first time how scientists might deliberately engineer superconductors that work at higher temperatures. In their report, a team of researchers explains why a thin layer of iron selenide superconducts at much higher temperatures when placed atop another material, which is called STO for its main ingredients strontium, titanium and oxygen. 

Electronic “tongue” to ensure food quality

November 12, 2014 10:35 am | by American Chemical Society | News | Comments

An electronic “tongue” could one day sample food and drinks as a quality check before they hit store shelves. Or it could someday monitor water for pollutants or test blood for signs of disease. With an eye toward these applications, scientists are reporting the development of a new, inexpensive and highly sensitive version of such a device in ACS Applied Materials & Interfaces.

Bending in search of new materials

November 11, 2014 2:15 pm | by Britt Faulstick, Drexel Univ. | News | Comments

Making a paper airplane in school used to mean trouble. Today it signals a promising discovery in materials science research that could help next-generation technology get off the ground. Researchers at Drexel Univ. and Dalian Univ. of Technology in China have chemically engineered a new, electrically conductive nanomaterial that is flexible enough to fold, but strong enough to support many times its own weight.

Good vibrations rock an insulator to go metallic

November 11, 2014 8:24 am | by Dawn Levy, Oak Ridge National Laboratory | News | Comments

For more than 50 years, scientists have debated what turns particular oxide insulators, in which electrons barely move, into metals, in which electrons flow freely. Some scientists sided with Nobel Prize–winning physicist Nevill Mott in thinking direct interactions between electrons were the key. Others believed, as did physicist Rudolf Peierls, that atomic vibrations and distortions trumped all.

Heat transfer sets noise floor for ultra-sensitive electronics

November 11, 2014 8:10 am | by Ken Than, Caltech | News | Comments

A team of engineers and scientists has identified a source of electronic noise that could affect the functioning of instruments operating at very low temperatures, such as devices used in radio telescopes and advanced physics experiments. The findingscould have implications for the future design of transistors and other electronic components.

First look at atom-thin boundaries

November 10, 2014 10:55 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Scientists at Oak Ridge National Laboratory have made the first direct observations of a 1-D boundary separating two different, atom-thin materials, enabling studies of long-theorized phenomena at these interfaces. Theorists have predicted the existence of intriguing properties at 1-D boundaries between two crystalline components, but experimental verification has eluded researchers.

New materials yield record efficiency polymer solar cells

November 10, 2014 10:20 am | by Tracey Peake, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. and Hong Kong Univ. of Science and Technology have found that temperature-controlled aggregation in a family of new semiconducting polymers is the key to creating highly efficient organic solar cells that can be mass produced more cheaply. Their findings also open the door to experimentation with different chemical mixtures that comprise the active layers of the cells.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading