Advertisement
Materials Processing
Subscribe to Materials Processing

The Lead

Making new materials an atomic layer at a time

April 17, 2014 9:36 am | News | Comments

Researchers in Pennsylvania and Texas have shown the ability to grow high quality, single-layer materials one on top of the other using chemical vapor deposition. This highly scalable technique, often used in the semiconductor industry, can produce materials with unique properties that could be applied to solar cells, ultracapacitors for energy storage, or advanced transistors for energy efficient electronics, among many other applications.

Trees go high-tech: Process turns cellulose into energy storage devices

April 7, 2014 1:19 pm | News | Comments

Chemists have found that cellulose, the most...

Researchers develop first phononic crystal that can be altered in real time

April 1, 2014 8:56 am | News | Comments

Using an acoustic metadevice that can influence...

Nano-paper filter can remove viruses

March 31, 2014 12:49 pm | by Linda Koffmar, Uppsala Univ. | News | Comments

Researchers in Sweden have designed a paper filter...

View Sample

FREE Email Newsletter

Thermoelectric capacity doubled with new thin film material

March 26, 2014 9:24 am | News | Comments

Because of their unique qualities, thermoelectric materials can convert waste heat into electricity. Researchers in the Netherlands have managed to significantly improve the efficiency of a common thermoelectric material by adjusting the fabrication conditions. The material may eventually be used to, for example, put the heat issued from a factory chimney or car exhaust pipe to good use.

Scientists discover material that can be solar cell by day, light panel by night

March 25, 2014 7:49 am | News | Comments

In what was almost a chance discovery, researchers in Singapore have developed a solar cell material which can emit light in addition to converting light to electricity. This solar cell is developed from perovskite, a promising material that could hold the key to creating high-efficiency, inexpensive solar cells. The new cells not only glow when electricity passes through them, they can also be customized to emit different colours.

Researcher: Study on element could change ballgame on radioactive waste

March 24, 2014 9:48 am | News | Comments

Groundbreaking work by a team of chemists on a fringe element of the periodic table could change how the world stores radioactive waste and recycles fuel. In carefully choreographed experiments, researchers in Florida have found that californium (Cf) had amazing abilities to bond and separate other materials. They also found it was extremely resistant to radiation damage.

Advertisement

Antimony nanocrystals improved for batteries

March 18, 2014 8:21 am | by Peter Rüegg, ETH Zurich | News | Comments

Researchers have succeeded for the first time to produce uniform antimony nanocrystals. Tested as components of laboratory batteries, these are able to store a large number of both lithium and sodium ions. These nanomaterials operate with high rate and may eventually be used as alternative anode materials in future high-energy-density batteries.

Atomically thin solar cells

March 10, 2014 12:56 pm | News | Comments

Graphene is not the only ultrathin material that exhibits special electronic properties. Ultrathin layers made of tungsten and selenium have recently been created in Austria that show a high internal efficiency when used to gather sunlight. More than 95% of light passes straight through, but a tenth of what is stopped is converted to electricity.

Team develops chemical solution for graphene challenges

February 24, 2014 9:15 am | News | Comments

Previous efforts to create graphene nanoribbons followed a top-down approach, using lithography and etching process to try to cut ribbons out of graphene sheets. Cutting ribbons 2 nm-wide is not practical, however, and these efforts have not been very successful. Now, a research team has developed a chemical approach to mass producing these graphene nanoribbons. This process that may provide an avenue to harnessing graphene's conductivity.

New chemistry could make it easier to design materials to order

February 21, 2014 10:59 am | News | Comments

Researchers in the U.K. have developed a method of controlling the composition of a range of polymers, the large molecules that are commonly used as plastics and fibers. They have demonstrated how the chemical reactions can be manipulated, especially in fixing the composition of a polymer using a mixture of up to three different monomers. The secret lies in understanding and switching “on” and “off” the catalyst used to make the polymers.

Self-organization controls “length” of supramolecular polymers

February 4, 2014 9:08 am | News | Comments

In a world’s first, researchers at the National Institute of Materials Science in Japan have succeeded in controlling the length of a one-dimensional, or supramolecular, assembly of molecules. Their method involves molecular self-organization, which until now has not been practical for polymer synthesis because of a lack of knowledge about the interplay of organizational pathways.

Advertisement

World’s first continuous-wave, tunable diamond Raman lasers

January 31, 2014 12:13 pm | News | Comments

Scientists at the Univ. of Strathclyde, U.K., have successfully demonstrated two notable high-power laser research developments: the first ever tunable diamond Raman laser and the first continuous-wave (CW) laser. Both lasers use synthetic diamond material made by California’s Element Six. The breakthrough is a significant achievement in solid-state laser engineering.

Navy researchers create new type of graphene transport device

January 29, 2014 10:12 am | News | Comments

Scientists at the U.S. Naval Research Laboratory have created a new type of tunnel device structure in which the tunnel barrier and transport channel are made of the same material, graphene. Their work shows the highest spin injection values yet measured for graphene, opening an entirely new avenue for making highly functional, scalable graphene-based electronic and spintronic devices a reality.

In situ bandgap tuning of graphene oxide

January 7, 2014 10:07 am | News | Comments

A research group at Japan’s National Institute for Materials Science has developed a method for creating a bandgap in graphene oxide by changing the bonding state of carbon atoms that compose graphene through reversible absorption and desorption of oxygen atoms on the graphene. This allows in situ bandgap tuning, which could help develop high-performance nanoscale devices using graphene oxide membranes.

Nano-inspired packaging plastic protects as well as aluminium foil

January 6, 2014 12:06 pm | News | Comments

A spin-off company from Singapore’s A*STAR research institute, has invented a new plastic film using a nano-inspired process that makes the material thinner but as effective as aluminium foil in keeping air and moisture at bay. The stretchable plastic could be an alternative for prolonging shelf-life of pharmaceuticals, food, and electronics, bridging the gap of aluminium foil and transparent oxide films.

Ultra-thin tool heating improves injection molding

January 2, 2014 11:58 am | News | Comments

To manufacture plastic parts with high-end surfaces, the entire forming tool is heated to 110 C using a technique known as variothermic tempering. To retrieve the finished plastic part, the mold must be cooled by up to 30 C, consuming lots of energy. Researchers have now developed a new kind of tempering technique that is up to 90% more energy efficient than variothermic tempering approaches.

Advertisement

Bio-inspired way to grow graphene for electronic devices

December 30, 2013 9:56 am | News | Comments

Inspired by how beetles and tree frogs keep their feet attached to submerged leaves, researchers in Singapore have revealed a new method that allows both the growth and transfer steps of graphene on a silicon wafer. This technique enables the graphene to be applied in photonics and electronics, for devices such as optoelectronic modulators, transistors, on-chip biosensors, and tunnelling barriers.

Success in fabrication of 3-D single-element quasicrystal

December 26, 2013 12:06 pm | News | Comments

A research group based in Japan has succeeded for the first time in fabricating a 3-D structure of a quasicrystal composed of a single element. Discovered in 1984, quasicrystals have been found in more than 100 kinds of alloy, polymer and nanoparticle systems. However, a quasicrystal composed of a single element has not yet been found.

Lowering titanium’s cost, environmental footprint for lightweight products

December 18, 2013 2:34 pm | News | Comments

A new method for extracting titanium significantly reduces the energy required to separate it from its tightly bound companion, oxygen. Scientists have discovered that they could eliminate the energy-intensive steps of the Kroll process, a finding that could lower cost and accessibility of future titanium products.

New graphene treatment could unleash new uses

December 17, 2013 3:38 pm | by David L. Chandler, MIT News Office | News | Comments

Graphene, a two-dimensional array of carbon atoms, has shown great promise for a variety of applications, but for many suggested uses the material requires treatments that can be expensive and difficult to apply predictably. Now, a team of researchers has found a simple, inexpensive treatment that may help to unleash the material’s potential.

Berkeley Lab creates first soluble 2-D supramolecular organic frameworks

December 17, 2013 12:53 am | News | Comments

Metal-organic frameworks (MOFs) are commanding considerable research attention because of their appetite for greenhouse gases. But now supramolecular organic frameworks (SOFs), held together by non-covalent bonds, have joined the field. Researchers have unveiled the first 2-D SOFs that self-assemble in solution, an important breakthrough that holds implications for sensing, separation technologies, and biomimetics.

ORNL devises recipe to fine-tune diameter of silica rods

December 16, 2013 3:22 pm | News | Comments

The goal of fabricating fixed-size one-dimensional silica structures and being able to precisely control the diameter during growth has long eluded scientists. Now, Oak Ridge National Laboratory researchers Panos Datskos and Jaswinder Sharma have demonstrated what they describe as the addressable local control of diameter of each segment of the silica rod.

Researchers discover a potential catalyst substitute for platinum

December 13, 2013 4:16 pm | News | Comments

Today’s fuel cells require costly platinum as a catalyst for the reaction that forms water from hydrogen and oxygen. A research team inspired by nature to develop an alternative catalyst has designed a material consisting of organic molecules as well as iron or manganese on a metallic substrate. These materials are less costly and more easily available than platinum.

3-D printed implants may soon fix complex injuries

December 13, 2013 2:54 pm | by Katie Feldman, National Science Foundation | News | Comments

Researchers are adapting technology for 3-D printing metals, ceramics, and other materials to create custom medical implants designed to fix complicated injuries. Using a technology called Laser Engineered Net Shaping (LENS), these new implants integrate into the body more effectively, encouraging bone regrowth that ultimately results in a stronger, longer lasting implant.

“Zero-dimensional” carbon nanotube may lead to superthin electronics and synthetic cells

December 12, 2013 8:23 am | News | Comments

One of the most difficult hurdles in adapting carbon nanotubes to industrial purposes is processing the carbon nanotubes into smaller forms to allow them to more easily disperse. However, recent research has managed to cut carbon nanotubes into the smallest dimensions ever to overcome this problem.

Scientists discover quick recipe for producing hydrogen

December 9, 2013 10:00 am | News | Comments

Researchers in Lyon, a French city famed for its cuisine, have discovered a quick-cook recipe for copious volumes of hydrogen that involves water, rock, aluminum oxide and extreme pressure. The breakthrough suggests a better way of producing the hydrogen that propels rockets and energizes battery-like fuel cells.

EPFL's campus has the world's first solar window

November 5, 2013 4:08 pm | News | Comments

The Swiss Federal Institute of Technology in Lausanne’s new convention center, opening in April 2014, is being equipped with a glass façade composed of dye solar cells. The project, a world’s first for an exterior window, leverages the potential of dye-sensitive solar cells known as Graetzel cells, which are indifferent to the angle of incidence of light that hits them.

Microfluidic material breakthrough allows wafer-scale mass production of lab-on-chip

November 1, 2013 12:04 pm | News | Comments

Belgian nanoelectronics research center Imec and JSR, a materials company based in Tokyo, Japan, announce that they have successfully used JSR’s innovative PA (Photo-patternable Adhesive) material for wafer-scale processing of lab-on-chip devices. Using this material, imec has processed microfluidic cell-sorter devices, merging microheaters and sensors with wafer-scale polymer microfluidics.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading