Advertisement
Materials Processing
Subscribe to Materials Processing

The Lead

Technique simplifies the creation of high-tech crystals

July 22, 2014 2:29 pm | News | Comments

Highly purified crystals that split light with precision are valued in specialized optics. But photonic crystals are difficult to make with current techniques, namely electron beam etching. Researchers at Princeton and Columbia universities have proposed a new method derived from colloidal suspensions that could allow scientists to customize and grow optimal crystals with relative ease.

Simple, low cost laser technique improves nanomaterials

July 22, 2014 1:28 pm | News | Comments

By “drawing” micropatterns on nanomaterials using...

Chemists eye improved thin films with metal substitution

July 21, 2014 1:46 pm | News | Comments

The yield so far is small, but chemists at the...

Swiss cross made from just 20 single atoms

July 15, 2014 9:14 am | News | Comments

Together with teams from Finland and Japan,...

View Sample

FREE Email Newsletter

Using sand to improve battery performance

July 8, 2014 7:43 pm | by Sean Nealon, Univ. of California, Riverside | News | Comments

Researchers at the Univ. of California, Riverside have used a quartz-rich material to fabricate a lithium-ion battery that outperforms the current industry standard by three times. This key material? Sand. Through a heating process with salt and magnesium, the scientists created a porous nano-silicon sponge that greatly increases active surface area.  

Silicon sponge improves lithium-ion battery performance

July 8, 2014 10:20 am | News | Comments

Researchers at Pacific Northwest National Laboratory have developed a porous material to replace the graphite traditionally used in a battery's electrodes. Made from silicon, which has more than 10 times the energy storage capacity of graphite, the sponge-like material can help lithium-ion batteries store more energy and run longer on a single charge.

New NIST metamaterial gives light a one-way ticket

July 2, 2014 11:58 am | News | Comments

The light-warping structures known as metamaterials have a new trick in their ever-expanding repertoire. Researchers at NIST have built a silver, glass and chromium nanostructure that can all but stop visible light cold in one direction while giving it a pass in the other. The device could someday play a role in optical information processing and in novel biosensing devices.

Advertisement

Inspired by nature, researchers create tougher metal materials

July 2, 2014 11:56 am | News | Comments

Materials science experts in North Carolina and China collaborated on work that drew inspiration from the structure of bones and bamboo. The team has found that by gradually changing the internal structure of metals, stronger, tougher materials can be created and customized for a wide variety of applications, from body armor to automobile parts. The gradient structure concept works on numerous metals, including stainless steel and nickel.

Engineers envision electronic switch just three atoms thick

July 1, 2014 9:53 am | by Tom Abate, Stanford Engineering | News | Comments

Computer simulation has shown Stanford Univ. engineers how to make a crystal that would toggle like a light switch between conductive and non-conductive structures. This flexible, switchable lattice, just three atoms thick, can be turned on or off by mechanically pushing or pulling, and could lead to flexible electronic materials.

Nanofibers for quantum computing

June 17, 2014 4:12 pm | News | Comments

A proposed hybrid quantum processor for a future quantum computer uses trapped atoms as the memory and superconducting qubits as the processor. The concept requires, however, an optical trap that is able to work well with superconductors, which don’t like magnetic fields or high optical power. Joint Quantum Institute scientists believe they’ve developed an effective method for creating these ultra-high transmission optical nanofibers.

Nanoparticle production method could lead to better lights, lenses, solar cells

June 17, 2014 4:02 pm | News | Comments

Titanium dioxide nanoparticles show great promise as optical encapsulants or fillers for tunable refractive index coatings. However, they've been largely shunned because they’ve been difficult and expensive to make. Scientists at Sandia National Laboratories have now come up with an inexpensive way to synthesize properly sized titanium dioxide nanoparticles and is seeking partners who can demonstrate the process at industrial scale.

Researchers in China develop cheaper method for making superlyophobic surfaces

June 11, 2014 11:41 am | News | Comments

Superlyophobic surfaces are simultaneously repellant for almost any liquid and exhibit high contact angles and low flow resist. But the demanding and usually expensive fabrication remains a bottleneck for further development. Researchers in Shenzhen, China, however, have now formulated a facile and inexpensive microfabrication method that uses polymers to help transfer the superlyophobic structures to curable materials.

Advertisement

All-natural mixture yields promising fire retardant

June 6, 2014 9:29 am | News | Comments

A dash of clay, a dab of fiber from crab shells, and a dollop of DNA: This strange group of materials are actually the ingredients of promising green fire retardants invented by researchers at NIST. Applied to polyurethane foam, the bio-based coatings greatly reduced the flammability of the common furniture padding after it was exposed to an open flame.

Breakthrough greatly strengthens graphene-reinforced composites

June 4, 2014 10:07 am | News | Comments

Haydale, a U.K.-based developer of a unique plasma functionalization process for nanomaterials, has announced the publication of research showing its functionalized graphene nanoplatelets significantly improve the nanoscale reinforcement of resin. The report states a greater than two times increase in tensile strength and modulus of an epoxy composite using this technology.

The hunt for white aluminium

May 30, 2014 10:29 am | by Katrine Krogh-Jeppesen, DTU | News | Comments

Bang & Olufsen is working with scientists in Denmark to develop a method for creating white aluminium surfaces. This has been exceedingly difficult for manufacturers because the existing technology used to color aluminium cannot be used to produce the color white because the molecules used to create “white” are too big. Rather than use pigments, then, researchers have a way to make it become white during the process.

New method is the first to control growth of metal crystals from single atoms

May 28, 2014 11:01 am | News | Comments

Using a doped-graphene matrix to slow down and then trap atoms of the precious metal osmium, researchers in the U.K. have shown the ability to control and quantify the growth of metal-crystals. When the trapped atoms come into contact with further osmium atoms they bind together, eventually growing into 3-D metal-crystals. They have called this new technique nanocrystallometry.

Multilayer nanofiber face mask helps to combat pollution

May 13, 2014 12:43 pm | News | Comments

In response to persistent haze and concerns about its health effects, scientists in Hong Kong have developed a simple face mask which can block out suspended particles. The nanofiber technology can filter ultra-fine pollutants that have yet been picked up by air quality monitors. These particles can measure 1 micrometer or less.

Advertisement

Graphene photonics breakthrough promises fast-speed, low-cost communications

May 9, 2014 12:08 pm | News | Comments

Researchers in Australia have created a micrometer thin film with record-breaking optical nonlinearity suitable for high-performance integrated photonic devices. To create the thin film the researchers spin coated graphene oxide solution to a glass surface. Using a laser as a pen they created microstructures on the graphene oxide film to tune the nonlinearity of the material.

Energy device for flexible electronics packs a lot of power

May 7, 2014 9:28 am | News | Comments

While flexible gadgets such as “electronic skin” and roll-up touch screens are moving ever closer to reality, their would-be power sources are either too wimpy or too stiff. But that’s changing fast. Scientists have developed a new device that’s far thinner than paper, can flex and bend, and store enough energy to provide critical back-up power for portable electronics.

Innovative imaging technique clarifies molecular self-assembly

May 5, 2014 9:50 am | News | Comments

Super-resolution microscopy has allowed optical imaging of objects with dimensions smaller than the diffraction limit. Researchers studying a type of material called supramolecular polymers have used this type of imaging to develop a new technique that allows them study molecular self-assembly at an unprecedented level of detail.

R&D 100 featured winner: RTI’s NLite nanofiber lighting technology

May 1, 2014 8:56 am | Videos | Comments

Of all the electricity generated in the U.S., more than quarter is consumed by lighting. In 2010, North Carolina’s RTI International launched a new product, NLite, intended to help alleviate this burden by improving the reflectance performance of power-intensive lighting devices such as luminaires and liquid crystal displays. The technology, based on nanofiber reflectance polymers, won a 2011 R&D 100 Award.

New fluorescent hybrid material changes color according to light direction

April 30, 2014 2:39 pm | News | Comments

Researchers in Spain have developed a highly fluorescent hybrid material that changes color depending on the polarization of the light that it is illuminated by. They achieved this with a perfect fit between an inorganic nanostructure and dye molecules.

New material coating technology mimics nature’s Lotus effect

April 22, 2014 8:34 am | News | Comments

Of late, engineers have been paying more and more attention to nature’s efficiencies, such as the Lotus effect, which describes the way the Lotus plant uses hydrophobic surfaces to survive in muddy swamps. A researcher at Virginia Tech has developed a simpler two-step application process to create a superhydrophobic copper surface that leverages the Lotus effect.

New research method produces large volumes of high-quality graphene

April 21, 2014 8:45 am | News | Comments

Researchers in Ireland have used a simple method for transforming flakes of graphite into defect-free graphene using commercially available tools, such as high-shear mixers.  They demonstrated that the process could be scaled up to produce hundreds of liters or more, and they have partnered with Thomas Swan Ltd. to develop two new graphene-based products for the marketplace.

Scientists produce thinnest feasible membrane

April 18, 2014 3:10 pm | by Fabio Bergamin, ETH Zurich | News | Comments

Researchers have produced a stable porous membrane that is thinner than a single nanometer. The membrane consists of two layers of graphene on which have been etched tiny pores of a precisely defined size. Extremely light and breathable, the new material could help enable a new generation of ultra-rapid filters or functional waterproof clothing.

Making new materials an atomic layer at a time

April 17, 2014 9:36 am | News | Comments

Researchers in Pennsylvania and Texas have shown the ability to grow high quality, single-layer materials one on top of the other using chemical vapor deposition. This highly scalable technique, often used in the semiconductor industry, can produce materials with unique properties that could be applied to solar cells, ultracapacitors for energy storage, or advanced transistors for energy efficient electronics, among many other applications.

Trees go high-tech: Process turns cellulose into energy storage devices

April 7, 2014 1:19 pm | News | Comments

Chemists have found that cellulose, the most abundant organic polymer on Earth, can be heated in a furnace in the presence of ammonia and turned into the building blocks for supercapacitors. The new process produces nitrogen-doped, nanoporous carbon membranes, which act as the electrodes of a supercapacitor. The only byproduct is methane, which could be used immediately as a fuel or for other purposes.

Researchers develop first phononic crystal that can be altered in real time

April 1, 2014 8:56 am | News | Comments

Using an acoustic metadevice that can influence the acoustic space and can control any of the ways in which waves travel, engineers have demonstrated, for the first time, that it is possible to dynamically alter the geometry of a 3-D colloidal crystal in real time. The crystals designed in the study, called metamaterials, are artificially structured materials that extend the properties of naturally occurring materials and compounds.  

Nano-paper filter can remove viruses

March 31, 2014 12:49 pm | by Linda Koffmar, Uppsala Univ. | News | Comments

Researchers in Sweden have designed a paper filter which is capable of removing virus particles with the efficiency matching that of the best industrial virus filters. The paper filter, which is manufactured according to traditional paper making processes, consists of 100% high purity cellulose nanofibers directly derived from nature.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading