Magnetic Materials
Subscribe to Magnetic Materials
View Sample

FREE Email Newsletter

A quantum simulator for magnetic materials

May 24, 2013 11:37 am | News | Comments

Physicists understand perfectly well why a fridge magnet sticks to certain metallic surfaces. But there are more exotic forms of magnetism whose properties remain unclear, despite decades of intense research. Now, researchers at ETH Zurich in Switzerland have developed a quantum simulator that can arrange atoms in a way that they mimic the behavior of electrons in magnetic materials.

Whirlpools on the nanoscale could multiply magnetic memory

May 22, 2013 11:04 am | by Paul Preuss, Berkeley Lab | News | Comments

Magnetic memories store bits of information in discrete units whose electron spins all line up in parallel, pointing one way or the opposite to signify a one or a zero. At the Advanced Light Source, Lawrence Berkeley National Laboratory scientists recently joined an international team to advance a new concept in magnetic memory, one in which spin orientation is controlled in magnetic nanodisks, allowing multi-bit storage.

Physicists light “magnetic fire” to reveal energy's path

May 13, 2013 3:27 pm | News | Comments

Research on bursts of energy within magnetic systems dates back two decades. But scientists haven't been able to measure and understand what prompts this phenomenon, known as "magnetic deflagration." New York University physicists have uncovered how energy is released and dispersed in magnetic materials in a process akin to the spread of forest fires.


New magnetic graphene may revolutionize electronics

May 10, 2013 12:44 pm | News | Comments

Scientists already know that graphene has extraordinary conductive, mechanical, and optical properties. Now it is possible to give it one more property: magnetism. Researchers in Spain have used a technique that involves growing a precise graphene film over a ruthenium single crystal inside an ultra high vacuum chamber where organic semiconducting molecules are evaporated on the graphene surface.

Scientists find new magic in magnetic material

May 8, 2013 4:04 pm | News | Comments

From powerful computers to super-sensitive medical and environmental detectors that are faster, smaller, and use less energy—yes, we want them, but how do we get them? In research that is helping to lay the groundwork for the electronics of the future, University of Delaware scientists have confirmed the presence of a magnetic field generated by electrons which scientists had theorized existed, but that had never been proven until now.

Scientists discover 3D magnetic vortices

May 7, 2013 11:15 am | News | Comments

Magnetic vortices typically occur in nanometer-scale magnetic disks, which are studied for their potential roles in wireless data transmission. So far, magnetic vortex states have been observed only within a plane, but recently researchers in Europe have discovered 3D magnetic vortices for the first time in a specially designed stack of magnetic disks.

Scientists find way to monitor elusive collisions in space

April 24, 2013 9:10 am | News | Comments

Many collisions occur between asteroids and other objects in our solar system, but scientists are not always able to detect or track these impacts from Earth. Space scientists at the University of California, Los Angeles have now devised a way to monitor these types of collisions in interplanetary space by using a new method to determine the mass of magnetic clouds that result from the impacts.

Researchers capture wasted heat, use it to power devices

April 23, 2013 11:37 am | by Matthew Chin and Bill Kisliuk, UCLA | News | Comments

Excess heat, like that generated by extended use of a computer or other device, naturally creates what is known as a spin wave that can move a domain wall, the dividing line between magnetic materials that point in different directions. Using this phenomenon, scientists in California have demonstrated how to add power to a spintronics device using electron spin rather than electron charge.


Device launches plasma, holds it together through the air

April 16, 2013 10:12 pm | News | Comments

A University of Missouri engineer has built a system that is able to launch a ring of plasma as far as two feet. Plasma is commonly created in the laboratory using powerful electromagnets, but previous efforts to hold the super-hot material through air have been unsuccessful. The new device does this by changing how the magnetic field around the plasma is arranged.

Manipulating ultrafast spin at terahertz frequencies

April 3, 2013 10:46 am | News | Comments

The use of femtosecond light pulses—the fastest man-made event—with photon energies ranging from X-rays (as used for instance at the HZB femto-slicing facility) to terahertz spectral range has proved to be an indispensable tool in ultrafast spin and magnetization dynamics studies. Researchers have recently demonstrated a simple but powerful way of manipulating the spins at these unprecedented speeds.

Measuring Mars: The MAVEN magnetometer takes shape

March 27, 2013 7:40 am | by Claire De Saravia, NASA's Goddard Space Flight Center | News | Comments

Scheduled for launch in late 2013, the Mars Atmosphere and Volatile Evolution (MAVEN) mission will carry a sensitive magnetic-field instrument built and tested by a team at NASA’s Goddard Space Flight Center. Very little magnetic field traces remain on Mars, which is forcing NASA to eliminate all magnetic traces from its spacecraft. The magnetometer may help determine the history of the loss of atmospheric gases to space through time, providing answers about Mars’ climate evolution.

Magnetic nano-droplet discovery presents telecom opportunity

March 20, 2013 5:06 pm | News | Comments

A team that includes researchers from Sweden has successfully created a magnetic soliton, a spin torque-generated nano-droplet that could lead to technological innovation in such areas as mobile telecommunications. This construct was first theorized 35 years ago and scientists have long believed that they exist in magnetic environments, but until now they had never been observed

Engineers make vibration sensor in the quantum world

March 18, 2013 9:21 am | News | Comments

Researchers in France and Germany have found a way to combine both carbon nanotubes with magnetic molecules on the atomic level to build a quantum mechanical system that acts as a vibration sensor. In their experiment the researchers used a carbon nanotube that was mounted between two metal electrodes, spanned a distance of about 1 µm, and could vibrate mechanically.


Researchers develop new method of controlling nanodevices

February 25, 2013 9:46 am | by Bill Kisliuk, UCLA | News | Comments

Electromagnetic devices, from power drills to smart-phones, require an electric current to create the magnetic fields that allow them to function. But researchers at the University of California, Los Angeles have developed a method for switching tiny magnetic fields on and off with an electric field—a sharp departure from the traditional approach of running a current through a wire. The new composite can control magneto-electric activity at a scale of just 10 nm.

Magnetic shielding innovation improves ion beam rockets

February 13, 2013 12:19 pm | News | Comments

Electric rocket engines known as Hall thrusters, which use a super high-velocity stream of ions to propel a spacecraft in space, have been used successfully onboard many missions for half a century. Erosion of the discharge channels walls, however, has limited their application to the inner solar system. A research team at Caltech's Jet Propulsion Laboratory has found a way to effectively control this erosion by shaping the engine's magnetic field in a way that shields the walls from ion bombardment.

KAIST develops wireless power transfer tech for high capacity transit

February 13, 2013 9:51 am | News | Comments

Engineers at the Korea Advanced Institute of Science and Technology (KAIST) and the Korea Railroad Research Institute have designed a wireless technology that can be applied to high capacity transportation systems such as railways, harbor freight, and airport transportation, and logistics. The technology supplies 60 kHz and 180 kW of power remotely to transport vehicles at a stable, constant rate.

New MRI technique has ability to scan individual cells

February 12, 2013 7:35 am | News | Comments

Researchers have recently demonstrated magnetic resonance imaging (MRI) on the molecular scale through the use of artificial atoms, diamond nanoparticles doped with nitrogen impurity. Conventional MRI responds to the magnetic fields of atomic nuclei, but this new method improves resolution nearly one million times, allowing scientists to probe very weak magnetic fields such as those generated in some biological molecules and even proteins.

Study: First evidence that magnetism helps salmon find home

February 11, 2013 9:24 am | News | Comments

When migrating, sockeye salmon typically swim up to 4,000 miles into the ocean and then, years later, navigate back to the upstream reaches of the rivers in which they were born to spawn their young. Scientists have long wondered how salmon find their way to their home rivers over such epic distances. A new study suggests that salmon find their home rivers by sensing the rivers' unique magnetic signature.

New magnetoelectric materials classes may improve computing

February 8, 2013 8:12 am | by Jared Sagoff, Argonne National Laboratory | News | Comments

Research by an international team of physicists has produced new methods for controlling magnetic order in a particular class of materials known as "magnetoelectrics", which have their magnetic and electric properties couple to each other. This link offers the possibility of controlling electric behavior with a magnetic signal, or vice versa. Scientists recently demonstrated this ability in europium-titanium oxide.

Magnetic nanovehicles control, target drug release in the body

January 28, 2013 10:57 am | News | Comments

Researchers in Switzerland have designed tiny vessels that are capable of releasing active agents in the body. These “nanovehicles” are made from a liposome just 100 to 200 nm in diameter. By attaching magnetic iron oxide nanoparticles to the surface, scientists are able to target the vessel, heating it up to release the drug.

Liquid crystal’s chaotic inner dynamics

January 24, 2013 4:08 pm | News | Comments

Physicists have recently demonstrated that the application of a very strong alternating electric field to thin liquid crystal cells leads to a new distinct nonlinear dynamic effect in the response of the cells. Researchers were able to explain this result through spatio-temporal chaos theory. The finding has implications for the operation of liquid crystal devices because their operation depends on electro-optic switch phenomena.

Quantitative magneto-mechanical made possible by the Barkhausen Effect

January 17, 2013 9:45 pm | News | Comments

The Barkhausen Effect is the noise in the magnetic output of a ferromagnet when the magnetizing force applied to it is changed. Almost 100 years after its initial discovery, a team of scientists in Alberta have harnessed this effect as a new kind of high-resolution microscopy for the insides of magnetic materials.

Chaotic “spin vortices” could lead to new computer memories

January 3, 2013 7:56 am | News | Comments

In science, just like in life, sometimes creating the most effective organization depends on being able to handle just a bit of chaos first. Scientists at Argonne National Laboratory have used alternating magnetic fields to control the behavior of "spin vortices" trapped in small dots made from iron and nickel that can be magnetized in two separate ways.

Researchers discover a new kind of magnetism

December 20, 2012 7:39 am | by David L. Chandler, MIT News Office | News | Comments

Following up on earlier theoretical predictions, Massachusetts Institute of Technology researchers have now demonstrated experimentally the existence of a fundamentally new kind of magnetic behavior, adding to the two previously known states of magnetism.

Physicists achieve elusive “evaporative cooling” of molecules

December 19, 2012 1:55 pm | News | Comments

Evaporative cooling has long been used to cool atoms, but it has never before been done by molecules—two different atoms bonded together. Achieving a goal considered nearly impossible, JILA physicists have done this, chilling a gas of molecules to very low temperatures by adapting the familiar process by which a hot cup of coffee cools.

You may login with either your assigned username or your e-mail address.
The password field is case sensitive.