Advertisement
Magnetic Materials
Subscribe to Magnetic Materials

The Lead

New class of magnets could energize the world

May 21, 2015 10:30 am | by Temple Univ. | News | Comments

A new class of magnets that expand their volume when placed in a magnetic field and generate negligible amounts of wasteful heat during energy harvesting, has been discovered by researchers at Temple Univ. and the Univ. of Maryland. This transformative breakthrough has the potential to not only displace existing technologies but create altogether new applications due to the unusual combination of magnetic properties.

Pattern recognition using magnonic holographic memory

May 12, 2015 7:55 am | by Sean Nealon, Univ. of California, Riverside | News | Comments

Researchers have successfully demonstrated pattern recognition using a magnonic holographic...

Ames Laboratory scientists create cheaper magnetic material for cars, wind turbines

April 27, 2015 12:21 pm | by Ames Laboratory | News | Comments

Karl A. Gschneidner and fellow scientists at Ames Laboratory have created a new magnetic alloy...

Heat makes electrons’ spin in magnetic superconductors

April 24, 2015 9:53 am | by Academy of Finland | News | Comments

Physicists have shown how heat can be exploited for controlling magnetic properties of matter....

View Sample

FREE Email Newsletter

The magnetic coercivity, the resistance to change in the orientation of the magnetic domain structure, for nickel (Ni) was shown to strongly depend on the crystal structure of the underlying oxide (vanadium oxide). The maximum Ni coercivity occurs at the

Giant magnetic effects induced in hybrid materials

April 20, 2015 2:22 pm | by Department of Energy, Office of Science | News | Comments

Proximity effects in hybrid heterostructures, which contain distinct layers of different materials, allow one material species to reveal and/or control properties of a dissimilar species. Specifically, for a magnetic thin film deposited onto a transition metal oxide film, the magnetic properties change dramatically as the oxide undergoes a structural phase transition.

Applied physics helps decipher the causes of sudden death

April 20, 2015 2:10 pm | by Universitat Politècnica de Catalunya (UPC) | News | Comments

Sudden cardiac death accounts for approximately 10 percent of natural deaths, most of which are due to ventricular fibrillation. Each year it causes 300,000 deaths in the United States and 20,000 in Spain. Researchers have demonstrated for the first time that the transition to calcium alternans, an arrhythmia associated with increased risk of sudden death, has common features with the magnetic ordering of metals.

SESAME passes an important milestone at CERN

April 8, 2015 1:57 pm | by CERN | News | Comments

The SESAME project has reached an important milestone: the first complete cell of this accelerator for the Middle East has been assembled and successfully tested at CERN. SESAME is a synchrotron light source under construction in Jordan.

Advertisement

Frustrated magnets: New experiment reveals clues to their discontent

April 6, 2015 8:12 am | by Catherine Zandonella, Princeton Univ. | News | Comments

An experiment conducted by Princeton Univ. researchers has revealed an unlikely behavior in a class of materials called frustrated magnets, addressing a long-debated question about the nature of these discontented quantum materials. The work represents a surprising discovery that down the road may suggest new research directions for advanced electronics.

Physicists solve low-temperature magnetic mystery

March 27, 2015 8:19 am | by Chelsea Whyte, Brookhaven National Laboratory | News | Comments

Researchers have made an experimental breakthrough in explaining a rare property of an exotic magnetic material, potentially opening a path to a host of new technologies. From information storage to magnetic refrigeration, many of tomorrow's most promising innovations rely on sophisticated magnetic materials, and this discovery opens the door to harnessing the physics that governs those materials. 

Magnetic brain stimulation

March 13, 2015 7:54 am | by David L. Chandler, MIT News Office | Videos | Comments

Researchers at Massachusetts Institute of Technology have developed a method to stimulate brain tissue using external magnetic fields and injected magnetic nanoparticles: a technique allowing direct stimulation of neurons, which could be an effective treatment for a variety of neurological diseases, without the need for implants or external connections.

Magnetic material attracts attention for cancer therapy

March 5, 2015 9:23 am | by Monash Univ. | News | Comments

An extraordinary self-regulating heating effect that can be achieved in a particular type of magnetic material may open the doors to a new strategy for hyperthermia cancer treatment. Temperatures that can be tolerated by healthy body cells have long been known to destroy cancerous cells. An approach that uses magnetic particles introduced into tissue and heated remotely has found some success in treating cancer. 

Researchers make magnetic graphene

January 26, 2015 10:22 am | by Univ. of California, Riverside | News | Comments

Graphene has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic impurities, but this doping tends to disrupt graphene's electronic properties. Now a team of physicists at the Univ. of California, Riverside has found an ingenious way to induce magnetism in graphene while also preserving graphene's electronic properties.

Advertisement

Structure control unlocks magnetization, polarization simultaneously

January 26, 2015 7:53 am | by Univ. of Liverpool | News | Comments

Scientists at the Univ. of Liverpool have controlled the structure of a material to simultaneously generate both magnetization and electrical polarization, an advance which has potential applications in information storage and processing. The researchers demonstrated that it's possible to unlock these properties in a material which initially displayed neither by making designed changes to its structure.

Researchers develop multiferroic materials, devices integrated with silicon chips

January 13, 2015 10:59 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

A research team led by North Carolina State Univ. has made two advances in multiferroic materials, including the ability to integrate them on a silicon chip, which will allow the development of new electronic memory devices. The researchers have already created prototypes of the devices and are in the process of testing them. Multiferroic materials have both ferroelectric and ferromagnetic properties.

Researchers create, control spin waves

November 18, 2014 7:50 am | by James Devitt, New York Univ. | News | Comments

A team of New York Univ. and Univ. of Barcelona physicists has developed a method to control the movements occurring within magnetic materials, which are used to store and carry information. The breakthrough could simultaneously bolster information processing while reducing the energy necessary to do so.

New evidence for exotic, predicted superconducting state

October 27, 2014 12:35 pm | News | Comments

A research team led by a Brown Univ. physicist has produced new evidence for an exotic superconducting state, first predicted a half-century ago, that can arise when a superconductor is exposed to a strong magnetic field. This new understanding of what happens when electron spin populations become unequal could have implications beyond superconductivity.

High field magnet exceeds expectations with 26-T test

October 24, 2014 9:30 am | News | Comments

Certain quantum physical phenomena in matter can only be clearly visualized in the presence of extreme magnetic fields. Physicists in Germany are developing a new high field magnet based on a hybrid design conceived in the U.S. On Oct. 16, 2014, scientists with the High Field Magnet project reported consistent magnetic fields of 26 T, higher than 25-T goal originally conceived.

Advertisement

Cooling to near absolute zero with magnetic molecules

October 23, 2014 12:56 pm | News | Comments

An international team of scientists have become the first to successfully reach temperatures below -272.15 C, which is just above absolute zero, using magnetic molecules. The effort, which avoids the use of helium, depends on a form of gadolinium that appropriately has a structure resembling a snowflake.

Magnetic mirrors enable new technologies by reflecting light in uncanny ways

October 16, 2014 10:18 am | News | Comments

As in Alice’s journey through the looking-glass to Wonderland, mirrors in the real world can sometimes behave in surprising and unexpected ways, including a new class of mirror that works like no other. Scientists have demonstrated, for the first time, a new type of mirror that forgoes a familiar shiny metallic surface and instead reflects infrared light by using an unusual magnetic property of a non-metallic metamaterial.

A new dimension for integrated circuits: 3-D nanomagnetic logic

September 30, 2014 1:39 pm | News | Comments

Electrical engineers in Germany have demonstrated a new kind of building block for digital integrated circuits. Their experiments show that future computer chips could be based on 3-D arrangements of nanometer-scale magnets instead of transistors. In a 3-D stack of nanomagnets, the researchers have implemented a so-called “majority” logic gate, which could serve as a programmable switch in a digital circuit.

Magnetic field opens and closes nanovesicle

September 24, 2014 9:18 am | Videos | Comments

Researchers in the Netherlands have managed to open nanovesicles in a reversible process and close them using a magnet. Previously, these vesicles had been “loaded” with a drug and opened elsewhere using a chemical process, such as osmosis. The magnetic method, which is repeatable, is the first to demonstrate the viability of another method.

Oxides discovered by chemists could advance memory devices

September 17, 2014 1:35 pm | News | Comments

Combining materials that exhibit magnetic and ferroelectric properties could be a boon for electronics designs, revolutionizing logic circuits and jumpstarting spintronics. This task has proven difficult until a recently developed inorganic synthesis technique, created by chemists at The City College of New York, produced a new complex oxide that demonstrate both properties.

Magnetism intensified by defects

September 12, 2014 1:53 pm | News | Comments

As integrated circuits become increasingly miniaturized and the sizes of magnetic components approach nanoscale dimensions, magnetic properties can disappear. Scientists in Japan, with the help of a form of electron microscopy called split-illumination electron holography, have gained important insights into the development of stable, strong nanomagnets by discovering magnetism-amplifying atomic disorder in iron-aluminum alloys.

Magnetic nanocubes self-assemble into helical superstructures

September 5, 2014 7:46 am | by Jeanne Galatzer-Levy, Univ. of Illinois, Chicago | News | Comments

Materials made from nanoparticles hold promise for myriad applications. The challenge in creating these wonder materials is organizing the nanoparticles into orderly arrangements. Nanoparticles of magnetite, the most abundant magnetic material on earth, are found in living organisms from bacteria to birds. Nanocrystals of magnetite self-assemble into fine compass needles in the organism that help it to navigate.

Moore quantum materials: Recipe for serendipity

August 18, 2014 7:44 am | by Mike Williams, Rice Univ. | News | Comments

Thanks to a $1.5 million innovation award from the Gordon and Betty Moore Foundation, Rice Univ. physicist Emilia Morosan is embarking on a five-year quest to cook up a few unique compounds that have never been synthesized or explored. Morosan is no ordinary cook; her pantry includes metals, oxides and sulfides, and her recipes produce superconductors and exotic magnets.

New research to develop next-generation “race track memory” technology

August 13, 2014 9:02 am | News | Comments

Inspired by the discovery of “race track memory” by IBM researchers, scientists at the Univ. of California, Davis, with the support of the Semiconductor Research Corp., are investigating complex oxides that could be used to manipulate magnetic domain walls within the wires of semiconductor memory devices at nanoscale dimensions. This research may lead to devices that displace existing magnetic hard disk drive and solid state RAM solutions.

Competing forces coax nanocubes into helical structures

August 11, 2014 8:45 am | News | Comments

Scientists in Israel have recently used nanocubes to create surprisingly yarn-like strands: They showed that given the right conditions, cube-shaped nanoparticles are able to align into winding helical structures. Their results reveal how nanomaterials can self-assemble into unexpectedly beautiful and complex structures.

New material structures bend like microscopic hair

August 6, 2014 10:31 am | by Jennifer Chu, MIT News Office | Videos | Comments

MIT engineers have fabricated a new elastic material coated with microscopic, hairlike structures that tilt in response to a magnetic field. Depending on the field’s orientation, the microhairs can tilt to form a path through which fluid can flow; the material can even direct water upward, against gravity. Researchers say structures may be used in windows to wick away moisture.

Measuring the smallest magnets

July 28, 2014 11:05 am | News | Comments

A wildly bouncing tennis ball that travels a millions times the distance of its own size would be difficult to measure. But attaching the same ball to a measuring device would eliminate the “noise”. Researchers in Israel recently used a similar trick to measure the interaction between the smallest possible magnets (two electrons) after neutralizing magnetic noise that was a million times stronger than the signal they needed to detect.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading