Advertisement
Magnetic Materials
Subscribe to Magnetic Materials

The Lead

Magnetic skyrmions

Evidence for stable room-temperature skyrmions found

July 2, 2015 10:17 am | by RIKEN | News | Comments

Researchers have identified a class of materials that displays clear evidence for stable skyrmions at room temperature and above, paving the way for the development of useful spintronics devices. Magnetic skyrmions are tiny, nanometer-sized magnetic-spin vortices that emerge in magnetic materials. Because they are so small, they could potentially be used as extremely dense memory devices.

Bosch announces breakthrough in graphene sensor technology

June 29, 2015 10:35 am | by Francis Sedgemore, Graphene Flagship | News | Comments

Graphene Week 2015 was awash with outstanding research results, but one presentation created...

First room-temperature magnetic skyrmion bubbles created

June 12, 2015 2:26 pm | by Louise Lerner, Argonne National Laboratory | News | Comments

New ideas are bubbling up for more efficient computer memory. Researchers at UCLA and the U.S....

Ultrafast heat conduction manipulates nanoscale magnets

June 9, 2015 12:27 pm | by Rick Kubetz, University of Illinois at Urbana-Champaign | News | Comments

Researchers at the University of Illinois at Urbana-Champaign have uncovered physical mechanisms...

View Sample

FREE Email Newsletter

Moving sector walls on the nano scale

June 8, 2015 10:35 am | by Fabio Bergamin, ETH Zurich | News | Comments

Most magnetic materials have a structure that is somewhat more complicated than a commercially available domestic magnet: They not only have a north and south pole, but a variety of sectors, often only a few nanometers in size, in each of which the magnetic axis points in a different direction. These sectors are referred to as domains.

New class of magnets could energize the world

May 21, 2015 10:30 am | by Temple Univ. | News | Comments

A new class of magnets that expand their volume when placed in a magnetic field and generate negligible amounts of wasteful heat during energy harvesting, has been discovered by researchers at Temple Univ. and the Univ. of Maryland. This transformative breakthrough has the potential to not only displace existing technologies but create altogether new applications due to the unusual combination of magnetic properties.

Pattern recognition using magnonic holographic memory

May 12, 2015 7:55 am | by Sean Nealon, Univ. of California, Riverside | News | Comments

Researchers have successfully demonstrated pattern recognition using a magnonic holographic memory device, a development that could greatly improve speech and image recognition hardware. Pattern recognition focuses on finding patterns and regularities in data. The uniqueness of the demonstrated work is that the input patterns are encoded into the phases of the input spin waves.

Advertisement
Melting material in preparation for producing a new type of magnet

Ames Laboratory scientists create cheaper magnetic material for cars, wind turbines

April 27, 2015 12:21 pm | by Ames Laboratory | News | Comments

Karl A. Gschneidner and fellow scientists at Ames Laboratory have created a new magnetic alloy that is an alternative to traditional rare-earth permanent magnets. The new alloy—a potential replacement for high-performance permanent magnets found in automobile engines and wind turbines—eliminates the use of one of the scarcest and costliest rare earth elements, dysprosium, and instead uses cerium, the most abundant rare earth.

Heat makes electrons’ spin in magnetic superconductors

April 24, 2015 9:53 am | by Academy of Finland | News | Comments

Physicists have shown how heat can be exploited for controlling magnetic properties of matter. The finding helps in the development of more efficient mass memories. The result was published in Physical Review Letters. The international research group behind the breakthrough included Finnish researchers from the University of Jyväskylä and Aalto Univ.

The magnetic coercivity, the resistance to change in the orientation of the magnetic domain structure, for nickel (Ni) was shown to strongly depend on the crystal structure of the underlying oxide (vanadium oxide). The maximum Ni coercivity occurs at the

Giant magnetic effects induced in hybrid materials

April 20, 2015 2:22 pm | by Department of Energy, Office of Science | News | Comments

Proximity effects in hybrid heterostructures, which contain distinct layers of different materials, allow one material species to reveal and/or control properties of a dissimilar species. Specifically, for a magnetic thin film deposited onto a transition metal oxide film, the magnetic properties change dramatically as the oxide undergoes a structural phase transition.

Applied physics helps decipher the causes of sudden death

April 20, 2015 2:10 pm | by Universitat Politècnica de Catalunya (UPC) | News | Comments

Sudden cardiac death accounts for approximately 10 percent of natural deaths, most of which are due to ventricular fibrillation. Each year it causes 300,000 deaths in the United States and 20,000 in Spain. Researchers have demonstrated for the first time that the transition to calcium alternans, an arrhythmia associated with increased risk of sudden death, has common features with the magnetic ordering of metals.

SESAME passes an important milestone at CERN

April 8, 2015 1:57 pm | by CERN | News | Comments

The SESAME project has reached an important milestone: the first complete cell of this accelerator for the Middle East has been assembled and successfully tested at CERN. SESAME is a synchrotron light source under construction in Jordan.

Advertisement

Frustrated magnets: New experiment reveals clues to their discontent

April 6, 2015 8:12 am | by Catherine Zandonella, Princeton Univ. | News | Comments

An experiment conducted by Princeton Univ. researchers has revealed an unlikely behavior in a class of materials called frustrated magnets, addressing a long-debated question about the nature of these discontented quantum materials. The work represents a surprising discovery that down the road may suggest new research directions for advanced electronics.

Physicists solve low-temperature magnetic mystery

March 27, 2015 8:19 am | by Chelsea Whyte, Brookhaven National Laboratory | News | Comments

Researchers have made an experimental breakthrough in explaining a rare property of an exotic magnetic material, potentially opening a path to a host of new technologies. From information storage to magnetic refrigeration, many of tomorrow's most promising innovations rely on sophisticated magnetic materials, and this discovery opens the door to harnessing the physics that governs those materials. 

Magnetic brain stimulation

March 13, 2015 7:54 am | by David L. Chandler, MIT News Office | Videos | Comments

Researchers at Massachusetts Institute of Technology have developed a method to stimulate brain tissue using external magnetic fields and injected magnetic nanoparticles: a technique allowing direct stimulation of neurons, which could be an effective treatment for a variety of neurological diseases, without the need for implants or external connections.

Magnetic material attracts attention for cancer therapy

March 5, 2015 9:23 am | by Monash Univ. | News | Comments

An extraordinary self-regulating heating effect that can be achieved in a particular type of magnetic material may open the doors to a new strategy for hyperthermia cancer treatment. Temperatures that can be tolerated by healthy body cells have long been known to destroy cancerous cells. An approach that uses magnetic particles introduced into tissue and heated remotely has found some success in treating cancer. 

Researchers make magnetic graphene

January 26, 2015 10:22 am | by Univ. of California, Riverside | News | Comments

Graphene has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic impurities, but this doping tends to disrupt graphene's electronic properties. Now a team of physicists at the Univ. of California, Riverside has found an ingenious way to induce magnetism in graphene while also preserving graphene's electronic properties.

Advertisement

Structure control unlocks magnetization, polarization simultaneously

January 26, 2015 7:53 am | by Univ. of Liverpool | News | Comments

Scientists at the Univ. of Liverpool have controlled the structure of a material to simultaneously generate both magnetization and electrical polarization, an advance which has potential applications in information storage and processing. The researchers demonstrated that it's possible to unlock these properties in a material which initially displayed neither by making designed changes to its structure.

Researchers develop multiferroic materials, devices integrated with silicon chips

January 13, 2015 10:59 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

A research team led by North Carolina State Univ. has made two advances in multiferroic materials, including the ability to integrate them on a silicon chip, which will allow the development of new electronic memory devices. The researchers have already created prototypes of the devices and are in the process of testing them. Multiferroic materials have both ferroelectric and ferromagnetic properties.

Researchers create, control spin waves

November 18, 2014 7:50 am | by James Devitt, New York Univ. | News | Comments

A team of New York Univ. and Univ. of Barcelona physicists has developed a method to control the movements occurring within magnetic materials, which are used to store and carry information. The breakthrough could simultaneously bolster information processing while reducing the energy necessary to do so.

New evidence for exotic, predicted superconducting state

October 27, 2014 12:35 pm | News | Comments

A research team led by a Brown Univ. physicist has produced new evidence for an exotic superconducting state, first predicted a half-century ago, that can arise when a superconductor is exposed to a strong magnetic field. This new understanding of what happens when electron spin populations become unequal could have implications beyond superconductivity.

High field magnet exceeds expectations with 26-T test

October 24, 2014 9:30 am | News | Comments

Certain quantum physical phenomena in matter can only be clearly visualized in the presence of extreme magnetic fields. Physicists in Germany are developing a new high field magnet based on a hybrid design conceived in the U.S. On Oct. 16, 2014, scientists with the High Field Magnet project reported consistent magnetic fields of 26 T, higher than 25-T goal originally conceived.

Cooling to near absolute zero with magnetic molecules

October 23, 2014 12:56 pm | News | Comments

An international team of scientists have become the first to successfully reach temperatures below -272.15 C, which is just above absolute zero, using magnetic molecules. The effort, which avoids the use of helium, depends on a form of gadolinium that appropriately has a structure resembling a snowflake.

Magnetic mirrors enable new technologies by reflecting light in uncanny ways

October 16, 2014 10:18 am | News | Comments

As in Alice’s journey through the looking-glass to Wonderland, mirrors in the real world can sometimes behave in surprising and unexpected ways, including a new class of mirror that works like no other. Scientists have demonstrated, for the first time, a new type of mirror that forgoes a familiar shiny metallic surface and instead reflects infrared light by using an unusual magnetic property of a non-metallic metamaterial.

A new dimension for integrated circuits: 3-D nanomagnetic logic

September 30, 2014 1:39 pm | News | Comments

Electrical engineers in Germany have demonstrated a new kind of building block for digital integrated circuits. Their experiments show that future computer chips could be based on 3-D arrangements of nanometer-scale magnets instead of transistors. In a 3-D stack of nanomagnets, the researchers have implemented a so-called “majority” logic gate, which could serve as a programmable switch in a digital circuit.

Magnetic field opens and closes nanovesicle

September 24, 2014 9:18 am | Videos | Comments

Researchers in the Netherlands have managed to open nanovesicles in a reversible process and close them using a magnet. Previously, these vesicles had been “loaded” with a drug and opened elsewhere using a chemical process, such as osmosis. The magnetic method, which is repeatable, is the first to demonstrate the viability of another method.

Oxides discovered by chemists could advance memory devices

September 17, 2014 1:35 pm | News | Comments

Combining materials that exhibit magnetic and ferroelectric properties could be a boon for electronics designs, revolutionizing logic circuits and jumpstarting spintronics. This task has proven difficult until a recently developed inorganic synthesis technique, created by chemists at The City College of New York, produced a new complex oxide that demonstrate both properties.

Magnetism intensified by defects

September 12, 2014 1:53 pm | News | Comments

As integrated circuits become increasingly miniaturized and the sizes of magnetic components approach nanoscale dimensions, magnetic properties can disappear. Scientists in Japan, with the help of a form of electron microscopy called split-illumination electron holography, have gained important insights into the development of stable, strong nanomagnets by discovering magnetism-amplifying atomic disorder in iron-aluminum alloys.

Magnetic nanocubes self-assemble into helical superstructures

September 5, 2014 7:46 am | by Jeanne Galatzer-Levy, Univ. of Illinois, Chicago | News | Comments

Materials made from nanoparticles hold promise for myriad applications. The challenge in creating these wonder materials is organizing the nanoparticles into orderly arrangements. Nanoparticles of magnetite, the most abundant magnetic material on earth, are found in living organisms from bacteria to birds. Nanocrystals of magnetite self-assemble into fine compass needles in the organism that help it to navigate.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading