Advertisement
Liquids
Subscribe to Liquids

The Lead

Simulations predict flat liquid

May 21, 2015 10:11 am | by Academy of Finland | News | Comments

Computer simulations have predicted a new phase of matter: atomically thin 2-D liquid. This prediction pushes the boundaries of possible phases of materials further than ever before. Two-dimensional materials themselves were considered impossible until the discovery of graphene around 10 years ago.

Materials crystallize with surprising properties

May 13, 2015 8:20 am | by American Chemical Society | Videos | Comments

Think about your favorite toys as a child. Did they light up or make funny noises when you...

Desirable defects: A new meta-material based on colloids and liquid crystals

April 30, 2015 1:52 pm | by International School of Advanced Studies (SISSA) | News | Comments

A new method made computer models of colloidal suspensions in liquid crystals subjected to...

Invisible inks could help foil counterfeiters of all kinds

April 22, 2015 7:33 am | by Megan Fellman, Northwestern Univ. | News | Comments

Real or counterfeit? Northwestern Univ. scientists have invented sophisticated fluorescent inks...

View Sample

FREE Email Newsletter

Engineers invent 2-D liquid

April 2, 2015 11:55 am | by Evan Lerner, Univ. of Pennsylvania | News | Comments

Where water and oil meet, a 2-D world exists. This interface presents a potentially useful set of properties for chemists and engineers, but getting anything more complex than a soap molecule to stay there and behave predictably remains a challenge. Recently, a team from the Univ. of Pennsylvania has shown how to do just that.

Engineers solve mystery of dancing droplets

March 12, 2015 8:17 am | by Tom Abate, Stanford Engineering | Videos | Comments

A puzzling observation, pursued through hundreds of experiments, has led Stanford Univ. researchers to a simple yet profound discovery: Under certain circumstances, droplets of fluid will move like performers in a dance choreographed by molecular physics.

A simple way to make and reconfigure complex emulsions

February 26, 2015 8:00 am | by Anne Trafton, MIT News Office | Videos | Comments

Massachusetts Institute of Technology researchers have devised a new way to make complex liquid mixtures, known as emulsions, that could have many applications in drug delivery, sensing, cleaning up pollutants and performing chemical reactions. Many drugs, vaccines, cosmetics and lotions are emulsions, in which tiny droplets of one liquid are suspended in another liquid.

Advertisement

The way liquids and glasses “relax”

January 15, 2015 2:04 pm | by Michael Baum, NIST | News | Comments

A new insight into the fundamental mechanics of the movement of molecules recently published by researchers at NIST offers a surprising view of what happens when you pour a liquid out of a cup. More important, it provides a theoretical foundation for a molecular-level process that must be controlled to ensure the stability of important protein-based drugs at room temperature.

Using liquid drops to make solids stiffer

December 15, 2014 2:13 pm | by Rase McCry, Yale Univ. | News | Comments

Engineers at Yale Univ. have discovered that the stiffness of liquid drops embedded in solids has something in common with Goldilocks: While large drops of liquids are softer than the solid that surrounds them, extremely tiny drops of liquid can actually be stiffer than certain solids. But when they’re “just right,” the liquid drops have the exact same stiffness as the surrounding solid.

Scientists do glass a solid

November 24, 2014 10:52 am | by New York Univ. | News | Comments

How does glass transition from a liquid to its familiar solid state? How does this common material transport heat and sound? And what microscopic changes occur when a glass gains rigidity as it cools? A team of researchers at New York Univ.'s Center for Soft Matter Research offers a theoretical explanation for these processes in Proceedings of the National Academy of Sciences.

Emergent behavior lets bubbles “sense” environment

October 27, 2014 12:46 pm | Videos | Comments

Tiny, soapy bubbles can reorganize their membranes to let material flow in and out in response to the surrounding environment, according to new research. This behavior could be exploited in creating microbubbles that deliver drugs or other payloads inside the body, and could help us understand how the very first living cells on Earth might have survived billions of years ago.

Liquid helium offers a fascinating new way to make charged molecules

October 24, 2014 9:36 am | News | Comments

Helium is a famously unreactive gas but when cooled to just above absolute zero it becomes a superfluid, a strange form of liquid. An Anglo-Austrian team has used this liquid to develop a completely new way of forming charged particles. The team’s key discovery is that helium atoms can acquire an excess negative charge which enables them to become aggressive new chemical reagents.

Advertisement

Ultra-fast charging batteries last 20 years, charge to 70% in 2 min

October 13, 2014 9:02 am | News | Comments

Scientists at Nanyang Technology University (NTU) in Singapore have developed a new type of lithium-ion battery in which the traditional graphite used for the anode has been replaced with a new gel material made from titanium dioxide. The new design allows the battery to endure more than 10,000 cycles, vs. about 500 recharge cycles for typical rechargeable lithium-ion batteries.

Researchers demonstrate how direct fluid flow influences neuron growth

October 7, 2014 2:11 pm | News | Comments

Axons are the shafts of neurons, on the tips of which connections are made with other neurons or cells. In a new study in Texas, researchers were able to use microfluidic stimulations to change the path of an axon at an angle of up to 90 degrees. The publication adds insight to the long accepted idea that chemical cues are primarily responsible for axonal pathfinding during human development and nervous system regeneration.

Droplets made to order

October 7, 2014 9:33 am | by David L. Chandler, MIT | News | Comments

Massachusetts Institute of Technology researchers have developed a new way of creating surfaces on which droplets of any desired shape can spontaneously form. They say this approach could lead to new biomedical assay devices and light-emitting diode display screens, among other applications. The new work represents the first time that scientists can control the shape of the contact area of the droplets.

Adding natural uncertainty improves mathematical models

September 30, 2014 1:11 pm | News | Comments

Mathematicians from Brown Univ. have introduced a new element of uncertainty into an equation used to describe the behavior of fluid flows. Ironically, allowing uncertainty into a mathematical equation that models fluid flows makes the equation much more capable of correctly reflecting the natural world, including the formation, strength, and position of air masses and fronts in the atmosphere.

Scientists make droplets move on their own

September 29, 2014 12:51 pm | Videos | Comments

Droplets are simple spheres of fluid, not normally considered capable of doing anything on their own. But now researchers have made droplets of alcohol move through water, even moving through complex mazes. The droplets can be led to certain targets, using a surprisingly simple impetus. In the future, such moving droplets may deliver medicines, moving entire chemistries to targets.

Advertisement

Low-cost, “green” transistor heralds advance in flexible electronics

September 24, 2014 10:02 am | News | Comments

As tech company LG demonstrated this summer with the unveiling of its 18-in flexible screen, the next generation of roll-up displays is tantalizingly close. Researchers are now reporting a new, inexpensive and simple way to make transparent, flexible transistors that could help bring roll-up smartphones with see-through displays and other bendable gadgets to consumers in just a few years.

Smartgels are thicker than water

September 19, 2014 10:08 am | by Poncie Rutsch, Okinawa Institute of Science and Technology | News | Comments

Transforming substances from liquids into gels plays an important role across many industries, but the transformation process, called gelation, is expensive and energy demanding. Instead of adding chemical thickeners and heating or cooling the fluids, as is traditional, researchers in Okinawa are experimenting with microfluidic platforms, adding nanoparticles and biomolecules with used pH, chemical and temperature sensing properties.

Researchers control surface tension to manipulate liquid metals

September 16, 2014 9:40 am | by Matt Shipman, News Services, North Carolina State Univ. | Videos | Comments

Researchers from North Carolina State Univ. have developed a technique for controlling the surface tension of liquid metals by applying very low voltages, opening the door to a new generation of reconfigurable electronic circuits, antennas and other technologies. The technique hinges on the fact that the oxide “skin” of the metal acts as a surfactant, lowering the surface tension between the metal and the surrounding fluid.

Parting water: “Electric prism” separates water’s nuclear spin states

September 8, 2014 1:43 pm | News | Comments

Using an "electric prism", or deflector, scientists have found a new way of separating water molecules that differ only in their nuclear spin states and, under normal conditions, do not part ways. Since water is such a fundamental molecule in the universe, the recent study may impact a multitude of research areas ranging from biology to astrophysics.

Quenching one's thirst for knowledge by studying beer foam

August 25, 2014 7:46 am | by Sarah Perrin, EPFL | News | Comments

A mechanical engineering student at EPFL in Switzerland wanted to understand the reason behind the formation of a “foam volcano” after tapping the neck of a bottle of beer. He studied the phenomenon with a high-speed camera and compared it to the outcome of applying the same action to sparkling water. His work offers insights into the behavior of cavitation nuclei.

Optimum inertial design for self-propulsion

July 29, 2014 11:01 am | News | Comments

A new study has investigated the effects of small but finite inertia on the propulsion of micro- and nano-scale swimming machines. Scientists have found that the direction of propulsion made possible by such inertia is opposite to that induced by a viscoelastic fluid. The findings could help to optimize the design of swimming machines to improve their mobility in medical applications.

Quenching the world's water and energy crises, one tiny droplet at a time

July 24, 2014 8:40 am | by Sarah Bates, National Science Foundation | Videos | Comments

More than a decade ago, news of a Namibian desert beetle’s efficient water collection system inspired engineers to try and reproduce these surfaces in the laboratory. Small-scale advances in fluid physics, materials engineering and nanoscience since that time have brought them close to succeeding. And their work could have impact on a wide range of industries at the macroscale.

Water molecules favor negative charges

July 17, 2014 7:52 am | News | Comments

Recent research shows that, in the presence of charged substances, water molecules favor associating with elements with a negative electrical charge rather than a positive electric charge. A study on the subject that employed advanced optical spectroscopy techniques could provide new insights on the processes of cell formation.

Toward a new way to keep electronics from overheating

July 2, 2014 1:05 pm | News | Comments

Using something called a microchannel heat sink to simulate the warm environment of a working computer, researchers in Malaysia have analyzed three nanofluids for the traits that are important in an effective coolant. The results of their study show that the nanofluids, which are made of metallic nanoparticles that have been added to a liquid, such as water, all performed better than water as coolants, with one mixture standing out.

Nature of solids and liquids explored through new pitch drop experiment

July 2, 2014 12:47 pm | News | Comments

Known as the “world's longest experiment”, an experiment at the University of Queensland in Australia was famous for taking ten years for a drop of pitch, a black, sticky material, to fall from a funnel. A new test in the U.K. is using a different bitumen, or pitch, which is 30 times less viscous than the Queensland experiment, so that the flow can be seen at a faster rate and hopefully provide more insights.

Separating finely mixed oil and water

July 1, 2014 11:51 am | by David L. Chandler, MIT News Office | News | Comments

Whenever there is a major spill of oil into water, the two tend to mix into a suspension of tiny droplets, called an emulsion, that is extremely hard to separate and can cause severe damage to ecosystems. A new membrane developed by Massachusetts Institute of Technology researchers can separate even these highly mixed fine oil-spill residues.

Interlayer distance in graphite oxide gradually changes when water is added

June 30, 2014 2:21 pm | News | Comments

Physicists in Europe have solved a mystery that has puzzled scientists for half a century. it has long been known that the distance between the graphene oxide layers depends on the humidity, not the actual amount of water added. But now, with the help of powerful microscopes, it can be seen how distance between graphite oxide layers gradually increases when water molecules are added, and why this phenomenon occurs.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading