Advertisement
Liquids
Subscribe to Liquids

The Lead

Diamonds are an oil’s best friend

March 28, 2014 7:47 am | by Mike Williams, Rice Univ. | News | Comments

Scientists at Rice Univ. have mixed very low concentrations of diamond nanoparticles with mineral oil to test the nanofluid’s thermal conductivity and how temperature would affect its viscosity. They found it to be much better than nanofluids that contain higher amounts of oxide, nitride or carbide ceramics, metals, semiconductors, carbon nanotubes and other composite materials. In short, it is the best nanofluid for heat transfer.

Researchers identify key intermediate steps in artificial photosynthesis reaction

March 3, 2014 2:42 pm | by Lyn Yarris, Berkeley Lab | News | Comments

A key to realizing commercial-scale artificial...

Metal ink could ease the way toward flexible electronic books, displays

January 8, 2014 9:02 am | News | Comments

Scientists are reporting the development of a novel metal ink made of small sheets of copper...

Researchers grow liquid crystal “flowers” that can be used as lenses

December 23, 2013 11:17 am | News | Comments

In earlier studies, a team from the Univ. of...

View Sample

FREE Email Newsletter

Water in cells behaves in complex and intricate ways

December 18, 2013 7:40 am | News | Comments

In a sort of biological "spooky action at a distance," water in a cell slows down in the tightest confines between proteins and develops the ability to affect other proteins much farther away, Univ. of Michigan researchers have discovered. The finding could provide insights into how and why proteins clump together in diseases such as Alzheimer's and Parkinson's.

This pot boils faster than you can watch it

December 16, 2013 3:31 pm | News | Comments

Scientists from the Hamburg Center for Free-Electron Laser Science have devised a novel way to boil water in less than a trillionth of a second. The theoretical concept, which uses terahertz radiation but has not yet been demonstrated in practice, could heat a small amount of water by as much as 600 C in just half a picosecond.

Micro­robots could become soft, move like biological organisms

December 6, 2013 8:49 am | News | Comments

A researcher team from Spain and Italy say that when envisioning in vivo microrobots of the future, we should forget cogwheels, pistons and levers. These miniature robots will be soft, and behave much like euglenids, tiny unicellular aquatic animals. Their work in studying these creatures have given them insights on how to design soft robots with effective mechanical structures.

Advertisement

Study shows how water dissolves stone, molecule by molecule

December 6, 2013 8:03 am | by Jade Boyd, Rice Univ. | News | Comments

Researchers have combined cutting-edge experimental techniques and computer simulations to find a new way of predicting how water dissolves crystalline structures like those found in natural stone and cement. The research could have wide-ranging impacts in diverse areas, including water quality and planning, environmental sustainability, corrosion resistance and cement construction.

Virtual wall builds invisible barrier and could stop spread of oil spills

December 4, 2013 12:23 pm | News | Comments

The outer shell of a droplet of oil on a surface has a thin skin which allows it to hold its shape like a small dome. Researchers at the Univ. of Missouri have developed a technique to form a virtual wall for oily liquids that will help confine them to a certain area, aiding researchers who are studying these complex molecules. The finding could also help halt industrial oil spills.

Shapes of things to come

December 3, 2013 8:40 am | News | Comments

Oil and water don’t mix, as any chemist or cook knows. Tom Russell, a polymer scientist from the Univ. of Massachusetts who now holds a visiting faculty appointment with Lawrence Berkeley National Laboratory’s Materials Sciences Div., is using that chemical and culinary truth to change the natural spherical shape of liquid drops into ellipsoids, tubes and even fibrous structures similar in appearance to glass wool.

Droplets break a theoretical time barrier on bouncing

November 21, 2013 7:25 am | by David L. Chandler, MIT News Office | Videos | Comments

Those who study hydrophobic materials are familiar with a theoretical limit on the time it takes for a water droplet to bounce away from such a surface. But Massachusetts Institute of Technology researchers have now found a way to burst through that perceived barrier, reducing the contact time by at least 40%.

Stingray movement could inspire the next generation of submarines

November 14, 2013 7:25 am | News | Comments

Stingrays swim through water with such ease that researchers from the Univ. at Buffalo and Harvard Univ. are studying how their movements could be used to design more agile and fuel-efficient unmanned underwater vehicles. The vehicles could allow researchers to more efficiently study the mostly unexplored ocean depths, and they could also serve during clean up or rescue efforts.

Advertisement

Team develops new template, pattern for arranging particles

November 7, 2013 11:35 am | News | Comments

An interdisciplinary team of University of Pennsylvania researchers has already developed a technique for controlling liquid crystals by means of physical templates and elastic energy, rather than the electromagnetic fields that manipulate them in televisions and computer monitors. They envision using this technique to direct the assembly of other materials, such as nanoparticles.

Inspired by the human eye, imaging system detects disease, hazardous substances

October 2, 2013 11:45 am | News | Comments

To tune how much light is received by optics, conventional devices use mechanical contraptions like the blades that form apertures in cameras. Engineers from the Univ. of Freiburg in Germany have made these solutions unnecessary by replacing conventional, solid lenses with the combination of a malleable lens and a liquid iris-like component.

Container’s properties affect the viscosity of nanoscale water

September 19, 2013 10:38 am | by John Toon, Georgia Tech | News | Comments

Water pours into a cup at about the same rate regardless of whether the water bottle is made of glass or plastic. But at nanometer-size scales, material type does make a significant difference. A new study shows that in nanoscopic channels, the effective viscosity of water in channels made of glass can be twice as high as water in plastic channels, potentially affecting a variety of research approaches.

Ion thruster: A new idea for nanosatellite micro-rockets

September 3, 2013 8:10 am | by Marcia Goodrich, MTU | News | Comments

Though nanosatellites already borrow several components, including cameras and radios, from terrestrial gadgets, propulsion systems have to be built from scratch. Researchers are working on electrospray ionic liquid “rockets”, but the microscopic needles they require are difficult and tedious to make. A researcher has found a way to let nature do the work, simplifying the fabrication process.

Möbius strip ties liquid crystal in knots

August 20, 2013 11:52 am | News | Comments

Liquid crystals are composed of long, thin, rod-like molecules which align themselves so they all point in the same direction. By controlling the alignment of these molecules, scientists can literally tie them in a knot. Researchers in the U.K. have done just this, tying knots in liquid crystals using a miniature Möbius strip made from silica particles.

Advertisement

Researchers examine dynamics of nanoscale liquid metal particles

August 15, 2013 2:31 pm | News | Comments

The evolution of fluid drops deposited on solid substrates has been a focus of large research effort for decades, and most recently it has focused on nanoscale properties. Two New Jersey Institute of Technology researchers are the first to demonstrate that simulations based on continuum fluid mechanics can explain the nanoscale dynamics of liquid metal particles on a substrate.

Researchers slow light to a crawl in liquid crystal matrix

August 14, 2013 5:28 pm | News | Comments

Scientists in France and China have embedded dye molecules in a liquid crystal matrix to throttle the group velocity of light back to less than one billionth of its top speed. The team says the ability to slow light in this manner may one day lead to new technologies in remote sensing and measurement science.

Auto lubricant could rev up medical imaging

August 5, 2013 9:57 am | News | Comments

Engineers at the Univ. of California, Berkeley have built a device that could speed up medical imaging without breaking the bank. The key ingredient? An engine lubricant called molybdenum disulfide, or MoS2, which has been sold in auto parts shops for decades.

New coating turns ordinary glass into superglass

August 5, 2013 8:08 am | News | Comments

A new transparent, bio-inspired coating makes ordinary glass tough, self-cleaning and incredibly slippery, a team from the Wyss Institute for Biologically Inspired Engineering at Harvard Univ. reported. The new coating could be used to create durable, scratch-resistant lenses for eyeglasses, self-cleaning windows, improved solar panels and new medical diagnostic devices.

Microdroplets stabilized using ink jet process

July 30, 2013 2:31 pm | by Angelika Jacobs, ETH Zurich | News | Comments

To save material and resources, scientists are trying to reduce their experiments to increasingly smaller sizes and scales. But micrometer-sized droplets evaporate very quickly, making the smooth handling of a micro experiment difficult. Researchers in Switzerland have address this difficulty by making use of a process they developed for 3D printing electronic parts to control and stabilize tiny droplets.

Protein surface defects act as drug targets

July 30, 2013 11:49 am | News | Comments

Drug designers now have a new way of designing drug candidates suitable for dislodging unstable water molecules. Previous research treated water as a continuum medium even at interfaces. Researchers in Argentina have built a discrete model that describes water molecules’ partial confinement on the protein’s surface. The area where water is most easily dislodged could be a candidate for drug target research.

When fluid dynamics mimic quantum mechanics

July 29, 2013 2:33 pm | by Larry Hardesty, MIT News Office | News | Comments

In an attempt to explain the wavelike behavior of quantum particles, the French physicist Louis de Broglie proposed what he called a “pilot wave” theory. Once abandoned as a concept, a real pilot-wave system has recently been discovered, allowing researchers at Massachusetts Institute of Technology to produce the fluidic analogue of a classic quantum experiment that offers a new perspective on wave-particle duality.

Study: Turbulence behavior of superfluids opposite that of ordinary fluids

July 25, 2013 6:49 pm | by Jennifer Chu, MIT | News | Comments

A superfluid, like liquid helium, moves like a completely frictionless liquid. Physicists at the Massachusetts Institute of Technology have applied a method called holographic duality to mathematically describe the complex behavior of superfluids—in particular, the turbulent flows within superfluids. Their approach, which generated a model similar to the behavior of cigarette smoke, involved translating the physics of black holes.

Analysis of proton “hop” sheds new light on conductivity of water

July 23, 2013 2:34 pm | News | Comments

The principle of proton conduction in water has been known for 200 years and is named after its discoverer, Theodor Grotthuss. Using theoretical calculations, researchers have now been able to analyze this mechanism in more detail and have shown that the currently accepted picture of proton diffusion, which has been compared to a “bucket line”, may need to be revised.

Explained: Hydrophobic and hydrophilic

July 18, 2013 8:51 am | by David L. Chandler, MIT News Office | News | Comments

People have observed the unusual behavior of water since ancient times, and many recent discoveries about water have been predicted more than one hundred years prior. But now technology is allowing us to harness those properties. Engineers are now designing practical materials that offer an affinity (hydrophilic) or repulsion to water (hydrophobic).

Finding the keys to boiling heat transfer

July 16, 2013 2:33 pm | by David L. Chandler, MIT News Office | News | Comments

A team of Massachusetts Institute of Technology researchers has carried out the first systematic investigation of the factors that control boiling heat transfer from a surface to a liquid. This process is crucial to the efficiency of power plants and the cooling of high-power electronics, and could even lead to improvements in how vehicles travel through water.

“Watermark Ink” device wins 2013 R&D 100 Award

July 11, 2013 11:25 am | News | Comments

A device that can instantly identify unknown liquids based on their surface tension has been selected to receive the 2013 R&D 100 Award—known as “the Oscar of Innovation”—from R&D Magazine. Invented by a team of materials scientists and applied physicists, the “Watermark Ink” (W-INK) device offers a cheap, fast and portable way to perform quality control tests and detect liquid contaminants.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading