Subscribe to Glass

The Lead

Lighting the way for future electronic devices

November 17, 2014 8:15 am | by Univ. of Southampton | News | Comments

Researchers at the Univ. of Southampton have demonstrated how glass can be manipulated to create electronic devices that will be smaller, faster and consume less power. The researchhas the potential to allow faster, more efficient electronic devices; further shrinking the size of our phones, tablets and computers and reducing their energy consumption by turning waste heat into power.

Research lights the way for super-fast computers

November 7, 2014 9:54 am | by Univ. of Surrey | News | Comments

New research demonstrates how glass can be...

Engineer readies for rapid discovery of metallic glasses

November 4, 2014 9:22 am | by Rase McCry, Yale Univ. | News | Comments

Yale Univ. engineer Jan Schroers will lead a three-year, $1.2 million project intended to...

Atomic trigger shatters mystery of how glass deforms

October 20, 2014 11:04 am | News | Comments

Research at Oak Ridge National Laboratory has cracked one mystery of glass to shed light on the...

View Sample

FREE Email Newsletter

Laser pulse turns glass into a metal

August 26, 2014 10:06 am | News | Comments

For tiny fractions of a second, when illuminated by a laser pulse, quartz glass can take on metallic properties. The phenomenon, recently revealed by large-scale computer simulations, frees electrons, allowing quartz to become opaque and conduct electricity. The effect could be used to build logical switches which are much faster than today’s microelectronics.

When things get glassy, molecules go fractal

April 24, 2014 7:36 am | News | Comments

Combining theory and numerical simulations, researchers have resolved an enduring question in the theory of glasses by showing that their energy landscapes are far rougher than previously believed. The new model, which shows that molecules in glassy materials settle into a fractal hierarchy of states, unites mathematics, theory and several formerly disparate properties of glasses.

Glasses strong as steel

April 14, 2014 7:29 am | by Eric Gershon, Yale Univ. | News | Comments

Scientists at Yale Univ. have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel. Using traditional methods, it usually takes a full day to identify a single metal alloy appropriate for making BMGs.


New use for an old troublemaker

March 24, 2014 9:04 am | News | Comments

An unwanted byproduct from a bygone method of glass production, the crystal devitrite could find a new use as an optical diffuser in medical laser treatments, communications systems and household lighting. For years, the properties of this material were not studied because it was considered as just a troublemaker in the glass-making process and needed to be eliminated.

Recent advances mean wider use of flexible metallic glass is coming

March 4, 2014 10:35 am | News | Comments

Scientists at Los Alamos National Laboratory are working toward even stronger and more elastic glass types which would fail in a ductile fashion instead of shattering. Researchers there are looking at the initiation of shear-banding events in order to better understand how to control the mechanical properties of these materials.

Physicists solve 20-year-old debate surrounding glassy surfaces

February 28, 2014 4:20 pm | News | Comments

U.K. scientists have succeeded in measuring how the surfaces of glassy materials flow like a liquid, even when they should be solid. A series of simple and elegant experiments were the solution to a problem that has been plaguing condensed matter physicists for the past 20 years. The finding has implications for thin-film coating designs.

Nanotechnology in glass sponge

February 24, 2014 9:54 am | News | Comments

To attach itself to surfaces, the marine sponge Monorhaphis chuni forms an unusual glass rod. Researchers have recently analyzed the nanostructure of the filament passing through the center of this glass rod and discovered that it is formed with a perfect periodic arrangement of nanopores. In this way, the sponge employs a similar method that is now used for fabrication of man-made mesoporous nanomaterials.

Toward perfect control of light waves

January 13, 2014 9:11 am | News | Comments

A team at the Laboratory for Attosecond Physics in Germany has constructed a detector which provides a detailed picture of the waveforms of femtosecond laser pulses. Knowledge of the exact waveform of these pulses enables scientists to reproducibly generate light flashes that are a thousand times shorter, just attoseconds, and can be used to study ultrafast processes at the molecular and atomic levels.


Overcoming brittleness: New insights into bulk metallic glass

November 18, 2013 8:06 am | News | Comments

From the production of tougher, more durable smartphones and other electronic devices, to a wider variety of longer lasting biomedical implants, bulk metallic glasses are poised to be mainstay materials for the 21st Century. Featuring a non-crystalline amorphous structure, bulk metallic glasses can be as strong or stronger than steel, as malleable as plastics, conduct electricity and resist corrosion.

Researchers demonstrate “accelerator on a chip”

September 30, 2013 8:45 am | News | Comments

In an advance that could dramatically shrink particle accelerators for science and medicine, researchers used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass chip smaller than a grain of rice.

Tiny camera records details of scene without losing sight of big picture

September 26, 2013 9:01 am | News | Comments

Cell phone cameras improve with every new model, but are still lacking in the fine resolution department. A team of researchers have created a miniature system that has the same quality as a full-size, wide-angle lens but is about the size of a walnut. The new system could be used to build a camera that pans and zooms with no moving parts.

Researchers accidentally make glass just two atoms thick

September 12, 2013 2:48 pm | News | Comments

At just a molecule thick, it's a new record: The world's thinnest sheet of glass, a serendipitous discovery by scientists at Cornell Univ. and Germany's Univ. of Ulm, has been recorded for posterity in the Guinness Book of World Records. The remarkable material was an accidental byproduct of a graphene fabrication process.

Q-glasses could be a new class of solids

August 7, 2013 10:13 am | News | Comments

There may be more kinds of stuff than we thought. A team of researchers has reported possible evidence for a new category of solids, things that are neither pure glasses, crystals nor even exotic quasicrystals. Something else. The research team analyzed a solid alloy that they discovered in small discrete patches of a rapidly cooled mixture of aluminum, iron and silicon.


New coating turns ordinary glass into superglass

August 5, 2013 8:08 am | News | Comments

A new transparent, bio-inspired coating makes ordinary glass tough, self-cleaning and incredibly slippery, a team from the Wyss Institute for Biologically Inspired Engineering at Harvard Univ. reported. The new coating could be used to create durable, scratch-resistant lenses for eyeglasses, self-cleaning windows, improved solar panels and new medical diagnostic devices.

Thin, flexible glass means new capabilities for energy storage

July 24, 2013 11:07 am | News | Comments

Thin glass is already widely used for displays. But even thinner glass, about one-tenth the thickness of display glass, can be customized to store energy at high temperatures. Recent experiments by a partnership of academic and industrial researchers have investigated various alkali-free glass compositions and thicknesses, and has resulted in inexpensive roll-to-roll glass capacitors with high energy density and high reliability.

Discovery could lead to new way of cleaning up oil spills

June 21, 2013 7:53 am | News | Comments

Univ. of Alberta researchers have shown that a simple glass surface can be made to repel oil underwater. This has huge implications for development of a chemical repellent technology for use in cleaning up oil spills. At the time of spills, marine flora and fauna may come into contact with the oil, wreaking major damage. Underwater oil-repellent technology can potentially prevent the toxic effect of oil on marine ecosystems.

New experiment opens window on glasses

June 10, 2013 8:25 am | News | Comments

For the first time, scientists have mapped the structure of a metallic glass on the atomic scale, bringing them closer to understanding where the liquid ends and the solid begins in glassy materials. A study led by Monash Univ. researchers has used a newly developed technique on one of the world’s highest-resolution electron microscopes to understand the structure of a zirconium-based metallic glass.

“Crystal-clear” method distinguishes between glass and fluids

May 28, 2013 11:40 am | News | Comments

Many solids are produced from melting, a process that creates complex internal stresses as the material cools. Until now, our understanding of the unique characteristics exhibited by the condition of the glass as compared with a tough molten mass has been spotty. A collaboration of several research teams in Europe has recently offered a surprisingly simple model to explain the difference between glass and molten materials.

Smashing glass at the molecular level

April 15, 2013 8:05 am | News | Comments

Whether gas trapped under a frozen water layer flows through cracks or bursts out depends on the layer's depth and temperature, according to scientists at Pacific Northwest National Laboratory. The water isn't crystalline ice; it is amorphous solid water, which is disordered and often described as a "frozen" liquid.

Researchers establish link between mechanical, structural properties of glass

April 11, 2013 1:58 am | News | Comments

For the first time, researchers from Amsterdam University in The Netherlands and DESY in Germany have now monitored subtle structural changes in a glass made from microscopic silica spheres, which they exposed to shear stress. Using a unique experimental setup at DESY’s PETRA III X-ray source, the scientists discovered coexisting structural states in the glass and related them to its flow behavior.

A new understanding of metallic glass

April 3, 2013 9:00 am | by David L. Chandler, MIT News Office | News | Comments

Gelatin sets by forming a solid matrix full of random, liquid-filled pores—much like a saturated sponge. It turns out that a similar process also happens in some metallic glasses, substances whose molecular behavior has now been clarified by new Massachusetts Institute of Technology research detailing the “setting” of these metal alloys.

Scientists build a nanoscale glass blower

March 25, 2013 3:43 pm | News | Comments

Using a principle similar to the way plastic bags shrivel and crumple in a fire, researchers at EPFL in Switzerland are using the electrical properties of a scanning electron microscope to change the size of glass capillary tubes at the nanoscale. Their method has already been patented and it could pave the way to many novel applications.

In probing mysteries of glass, researchers find a key to toughness

February 26, 2013 12:42 pm | News | Comments

Glass doesn’t have to be brittle. In a recently published paper, a Yale University team and collaborators propose a way of predicting whether a given glass will be brittle or ductile—a desirable property typically associated with metals like steel or aluminum—and assert that any glass could have either quality.

Study reveals extraordinary glass properties

January 7, 2013 7:41 am | News | Comments

Armed with a better understanding of how glasses age and evolve, researchers at the University of Chicago and the University of Wisconsin-Madison raise the possibility of designing a new class of materials at the molecular level via a vapor-deposition process.

A new breed of micro fuel cells

November 30, 2012 12:18 pm | News | Comments

Engineers at Yale University have developed a new breed of micro fuel cell that could serve as a long-lasting, low-cost, and eco-friendly power source for portable electronics. Major components of the new device are made of bulk metallic glasses, which can be finely shaped and molded using a comparatively efficient and inexpensive fabrication process akin to processes used in shaping plastics.

You may login with either your assigned username or your e-mail address.
The password field is case sensitive.