Advertisement
Gels
Subscribe to Gels

The Lead

New micro-environment could be major advance for stem cell growth strategies

April 1, 2014 8:18 am | News | Comments

Stem cells have the potential to repair human tissue and maintain organ function in chronic disease, but a major problem has been how to mass-produce such a complex living material. Scientists in the U.K. have now developed a new substance which could simplify the manufacture of therapeutic cells by allowing both self-renewal of cells and evolution into cardiomyocyte cells.

New gel permits targeted therapy after heart attack

April 1, 2014 8:17 am | News | Comments

Combatting the tissue degrading enzymes that cause...

Shrinking gel steers tooth tissue formation

March 6, 2014 9:02 am | by Dan Ferber, Wyss Institute for Biologically Inspired Engineering, Harvard Univ. | News | Comments

A bit of pressure from a new shrinking, sponge-like gel is all it takes to turn transplanted...

Pumping iron: A hydrogel actuator with mussel tone

March 6, 2014 8:48 am | by Marcia Goodrich, Michigan Technological Univ. | News | Comments

Protein from a small, tasty mollusk inspired Michigan Technological Univ.’s Bruce P. Lee to...

View Sample

FREE Email Newsletter

Gummy material addresses safety of lithium-ion batteries

February 4, 2014 8:39 am | by Tina Hilding, College of Engineering and Architecture | News | Comments

A group of Washington State Univ. researchers has developed a chewing gum-like battery material that could dramatically improve the safety of lithium-ion batteries. High-performance lithium batteries are popular in everything from computers to airplanes because they are able to store a large amount of energy compared to other batteries. Their biggest potential risk, however, comes from the electrolyte in the battery.

Smart gels deliver medicine on demand

January 15, 2014 10:04 am | News | Comments

Researchers at the Univ. of Delaware have developed a “smart” hydrogel that can deliver medicine on demand, in response to mechanical force. Over the past few decades, smart hydrogels have been created that respond to pH, temperature, DNA, light and other stimuli.

Engineers make strides toward artificial cartilage

December 13, 2013 1:50 pm | News | Comments

A Duke Univ. research team has developed a better recipe for synthetic replacement cartilage in joints. Combining two innovative technologies, the team found a way to create artificial replacement tissue that mimics both the strength and suppleness of native cartilage. Articular cartilage is the tissue on the ends of bones where they meet at joints in the body.

Advertisement

New method efficiently and easily bonds gels and biological tissues

December 12, 2013 8:49 am | News | Comments

A research team in France has invented an adhesion method that creates a strong bond between two gels by spreading on their surface a solution containing nanoparticles. Until now, there was no entirely satisfactory method of obtaining adhesion between two gels or two biological tissues. The bond is resistant to water and uses no polymers or chemical reactions.

Temperature-sensitive gelling scaffolds to regenerate craniofacial bone

December 11, 2013 2:59 pm | News | Comments

Rice Univ. bioengineers have developed a hydrogel scaffold for craniofacial bone tissue regeneration that starts as a liquid, solidifies into a gel in the body and liquefies again for removal. The material developed in a Rice laboratory is a soluble liquid at room temperature that can be injected to the point of need. At body temperature, it turns into a gel to help direct the formation of new bone to replace that damaged by injury.

Osteoarthritis medicine delivered on-demand

December 5, 2013 9:23 am | News | Comments

Scientists are reporting development of a squishy gel that, when compressed at a key location such as a painful knee joint, releases anti-inflammatory medicine. The new material could someday deliver medications when and where osteoarthritis patients need it most.

A better breathalyzer

October 9, 2013 7:48 am | News | Comments

To gauge whether suspects involved in accidents or routine traffic stops have been driving drunk, police officers pair field sobriety tests with breathalyzers. Most breathalyzers are expensive and unable to test for precise concentrations of alcohol. Offering a better solution, Italian researchers have developed a novel idea for an inexpensive, portable breathalyzer.

An organized approach to 3-D tissue engineering

August 20, 2013 7:43 am | News | Comments

Tissues designed with pre-formed vascular networks are known to promote rapid vascular integration with the host. Generally, prevascularization has been achieved by seeding or encapsulating endothelial cells, but these methods are slow. Hydrogels have also been tried, but a new technique developed in Singapore uses hydrogels with a new patterning process to quickly incorporate different cell types separately into different fibers.

Advertisement

Light that moves and molds gels

August 1, 2013 4:08 pm | News | Comments

Some animals, like the octopus and cuttlefish, transform their shape based on environment. For decades, researchers have worked toward mimicking similar biological responses in non-living organisms, as it would have significant implications in the medical arena. Now, researchers at the Univ. of Pittsburgh have demonstrated such a biomimetic response using hydrogels.

Scientists create novel silicon electrodes to improve lithium-ion batteries

June 4, 2013 7:55 am | News | Comments

Stanford Univ. scientists have dramatically improved the performance of lithium-ion batteries by creating novel electrodes made of silicon and conducting polymer hydrogel, a spongy material similar to that used in contact lenses and other household products. The scientists developed a new technique for producing low-cost, silicon-based batteries with potential applications for a wide range of electrical devices.

Engineered biomaterial could improve success of medical implants

May 14, 2013 12:24 pm | News | Comments

It’s a familiar scenario—a patient receives a medical implant and days later, the body attacks the artificial valve or device, causing complications to an already compromised system. Expensive medical devices and surgeries often are thwarted by the body’s natural response to attack something in the tissue that appears foreign. Now, University of Washington engineers have demonstrated in mice a way to prevent this sort of response.

Antibacterial hydrogel offers protection from stubborn infections

April 24, 2013 5:00 pm | News | Comments

Coating medical supplies with an antimicrobial material is one approach that bioengineers are using to combat the increasing spread of multidrug-resistant bacteria. A research team in Singapore has now developed a highly effective antimicrobial coating based on cationic polymers. The coating can be applied to medical equipment, such as catheters.

New device could cut costs on household products, pharmaceuticals

April 16, 2013 9:54 am | by Michelle Ma, University of Washington | News | Comments

Surfactant molecules, which are commonly found in soaps and detergents, have two main parts, a head and a tail, that help them break down and penetrate grease and oil. A research team has recently built a palm-sized microfluidics tool that passes water, detergent, and salt through tiny posts, producing a viscous, elastic gel that requires fewer surfactant molecules.

Advertisement

A new understanding of metallic glass

April 3, 2013 9:00 am | by David L. Chandler, MIT News Office | News | Comments

Gelatin sets by forming a solid matrix full of random, liquid-filled pores—much like a saturated sponge. It turns out that a similar process also happens in some metallic glasses, substances whose molecular behavior has now been clarified by new Massachusetts Institute of Technology research detailing the “setting” of these metal alloys.

Chinese university creates world's lightest material

March 25, 2013 3:55 pm | News | Comments

Scientists in China say they have developed the world's lightest material, which they expect to play an important role in tackling pollution. Call graphene aerogel, or simply carbon aerogel, the new material has a density of just 0.16 milligrams per cubic centimeter, a sixth that of air. It is derived from a gel, with the liquid component replaced by a gas. It appears in solid state with extremely low density.

New gel material releases drug under patient’s pressure

March 14, 2013 10:39 am | News | Comments

A research team at the National Institute of Materials Science in Japan has recently developed a gel material which is capable of releasing drugs in response to pressure applied by the patient. Three fingers applying force to the site of the gel produces an effect for up to three days. They built the new drug from two materials already used in pharmaceuticals: a saccharide and a natural component of algae.

New antimicrobial hydrogels fight superbugs and drug-resistant biofilms

January 24, 2013 8:20 am | News | Comments

Bacterial biofilms, which diseased groupings of cells found in 80% of infections, are a significant health hazard and one of the biggest headaches for hospitals and their constant battle against disease. Researchers from IBM, with the help of scientists in Singapore, revealed today a synthetic antimicrobial hydrogel that can break through diseased biofilms and completely eradicate drug-resistant bacteria upon contact. It is the first hydrogel to be biodegradable, biocompatible, and non-toxic.

Tissue engineers find cartilage repair success with new biomaterial

January 14, 2013 4:18 pm | News | Comments

In a small study recently conducted at Johns Hopkins Medicine, researchers reported increased healthy tissue growth after surgical repair of damaged cartilage if they put a “hydrogel” scaffolding into the wound to support and nourish the healing process. Physicians encourage cartilage growth by punching tiny holes in bone near the injured cartilage. This stimulates the patients’ stem cells to grow.

Oscillating gel gives synthetic materials the ability to “speak”

January 9, 2013 9:50 am | News | Comments

Self-moving gels can give synthetic materials the ability to "act alive" and mimic primitive biological communication, University of Pittsburgh researchers have found. In a recently published paper, the Pitt research team demonstrates that a synthetic system can reconfigure itself through a combination of chemical communication and interaction with light.

Hybrid tunnel may help guide severed nerves back to health

December 17, 2012 2:57 pm | News | Comments

Building a tunnel made up of both hard and soft materials to guide the reconnection of severed nerve endings may be the first step toward helping patients who have suffered extensive nerve trauma regain feeling and movement, according to a team of biomedical engineers.

Heart cells beat in bioscaffold for babies

December 12, 2012 11:01 am | News | Comments

A painstaking effort to create a biocompatible patch to heal infant hearts is paying off at Rice University and Texas Children’s Hospital. The proof is in a petri dish in Jeffrey Jacot's laboratory, where a small slab of gelatinous material beats with the rhythm of a living heart.

Mussel goo inspires blood vessel glue

December 12, 2012 8:08 am | News | Comments

A University of British Columbia researcher has helped create a gel—based on the mussel's knack for clinging to rocks, piers, and boat hulls-that can be painted onto the walls of blood vessels and stay put, forming a protective barrier with potentially life-saving implications.

Organic metamaterial flows like liquid

December 5, 2012 12:21 pm | News | Comments

A bit reminiscent of the Terminator T-1000, a new material created by Cornell University researchers is so soft that it can flow like a liquid and then, strangely, return to its original shape. Rather than liquid metal, it is a hydrogel, a mesh of organic molecules with many small empty spaces that can absorb water like a sponge. It qualifies as a "metamaterial" with properties not found in nature and may be the first organic metamaterial with mechanical metaproperties.

Injectable gels toughen up after entering the body

November 16, 2012 9:12 am | by Anne Trafton, MIT News Office | News | Comments

Gels that can be injected into the body, carrying drugs or cells that regenerate damaged tissue, hold promise for treating many types of disease. However, these injectable gels don't always maintain their solid structure once inside the body. Massachusetts Institute of Technology chemical engineers have now designed an injectable gel that responds to the body's high temperature by forming a reinforcing network that makes the gel much more durable, allowing it to function over a longer period of time.

These bots were made for walking

November 15, 2012 1:19 pm | News | Comments

They're soft, biocompatible, about 7 mm long, and able to walk by themselves. Miniature "bio-bots" developed at the University of Illinois are making tracks in synthetic biology. Designing non-electronic biological machines has been a riddle that scientists at the interface of biology and engineering have struggled to solve. These bio-bots demonstrate the Illinois team's ability to forward-engineer functional machines using only hydrogel, heart cells, and a 3D printer.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading