Advertisement
Electrical Materials
Subscribe to Electrical Materials

The Lead

Fundamental chemistry findings could help extend Moore’s Law

July 15, 2014 3:49 pm | by Kate Greene, Berkeley Lab | News | Comments

The doubling of transistors on a microprocessor occurs roughly every two years, and is the outcome of what is called Moore’s Law. In a bid to continue this trend of decreasing transistor size and increasing computation and energy efficiency, chip-maker Intel has partnered with Lawrence Berkeley National Laboratory to design an entirely new kind of photoresist, one that combines the best features of two existing types of resist.

Peeling back the layers of thin film structure and chemistry

July 11, 2014 12:33 pm | by Erika Gebel Berg, Argonne National Laboratory | News | Comments

Perovskites continue to entice materials...

New technology offers precise control of molecular self-assembly

July 10, 2014 5:09 pm | News | Comments

A research group based in Japan has developed a...

Silicon oxide memories catch manufacturers’ eye

July 10, 2014 5:06 pm | by Jade Boyd, Rice Univ. | News | Comments

First developed five years ago at Rice Univ.,...

View Sample

FREE Email Newsletter

“Nanopixels” promise thin, flexible high-res displays

July 10, 2014 9:35 am | News | Comments

A team in the U.K. has found that by sandwiching a 7-nm thick layer of a phase change material between two layers of a transparent electrode they could use a tiny current to “draw” images within the sandwich “stack”. The discovery could make it possible to create pixels just a few hundred nanometers across and pave the way for extremely high-resolution and low-energy thin, flexible displays.

Chemists develop novel catalyst with two functions

July 9, 2014 8:47 am | by Dr. Julia Weiler, Ruhr Univ. Bochum | News | Comments

A new type of catalyst, based on carbon, can facilitate two opposite reactions: electrolysis of water and combustion of hydrogen with oxygen. This bi-functionality, developed by researchers in Germany, is made possible from its construction: manganese-oxide or cobalt-oxide nanoparticles which are embedded in specially modified carbon, then integrated with nitrogen atoms in specific positions.

Using sand to improve battery performance

July 8, 2014 7:43 pm | by Sean Nealon, Univ. of California, Riverside | News | Comments

Researchers at the Univ. of California, Riverside have used a quartz-rich material to fabricate a lithium-ion battery that outperforms the current industry standard by three times. This key material? Sand. Through a heating process with salt and magnesium, the scientists created a porous nano-silicon sponge that greatly increases active surface area.  

Advertisement

Silicon sponge improves lithium-ion battery performance

July 8, 2014 10:20 am | News | Comments

Researchers at Pacific Northwest National Laboratory have developed a porous material to replace the graphite traditionally used in a battery's electrodes. Made from silicon, which has more than 10 times the energy storage capacity of graphite, the sponge-like material can help lithium-ion batteries store more energy and run longer on a single charge.

Nanoscale cooling element works in electrical insulators as well

July 8, 2014 8:45 am | News | Comments

An international research collaboration has designed a miniscule cooling element that uses spin waves to transport heat in electrical insulators. Although physicists have used spin for cooling purposes before, this is the first time that they have successfully done this in insulating materials. The cooling element could be used to dissipate heat in the increasingly smaller electrical components of computer chips.

Scientists discover how plastic solar panels work

July 1, 2014 11:52 am | News | Comments

Experts don't fully understand how “plastic” solar panels work, which complicates the improvement of their cost efficiency and hinders wider use of the technology. However, an international team has now determined how light beams excite the chemicals in solar panels, enabling them to produce charge. Their findings were made possible with the use of femtosecond Raman spectroscopy.

A smashing new look at nanoribbons

July 1, 2014 9:56 am | News | Comments

Recent research at the Rice Univ. lab of materials scientist Pulickel Ajayan has discovered that nanotubes that hit a target end first turn into mostly ragged clumps of atoms. But nanotubes that happen to broadside the target unzip into handy ribbons that can be used in composite materials for strength and applications that take advantage of their desirable electrical properties.

Engineers envision electronic switch just three atoms thick

July 1, 2014 9:53 am | by Tom Abate, Stanford Engineering | News | Comments

Computer simulation has shown Stanford Univ. engineers how to make a crystal that would toggle like a light switch between conductive and non-conductive structures. This flexible, switchable lattice, just three atoms thick, can be turned on or off by mechanically pushing or pulling, and could lead to flexible electronic materials.

Advertisement

More pores for more power

June 30, 2014 2:10 pm | News | Comments

Researchers in Germany have produced a new material the size of a sugar cube that has a surface area equivalent to more than seven tennis courts. This novel type of nanofiber has a highly ordered and porous structure gives it an extraordinarily high surface-to-volume ratio and could be a key enabling technology for lithium-sulfur batteries.

Scientists develop force sensor from carbon nanotubes

June 30, 2014 2:05 pm | News | Comments

A group of researchers from Russia, Belarus and Spain, including MIPT professor Yury Lozovik, have developed a microscopic force sensor based on carbon nanotubes. The device consists of two nanotubes placed so that their open ends are opposite to each other. Voltage of just 10 nA is then applied to the nanocircuit and force is measured by the change in position of the nanotubes.

Measuring the mass of “massless” electrons

June 23, 2014 2:57 pm | News | Comments

The electrons in graphene behave as “massless” particles, yet these electrons also seem to have dual personalities. Phenomena observed in the field of graphene plasmonics suggest that when the electrons move collectively, they must exhibit mass. After two years of effort, researchers at Harvard Univ. have successfully measured the collective mass of “massless” electrons in motion in graphene.

“Sensing skin” quickly detects cracks, damage in concrete structures

June 23, 2014 8:10 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. and the Univ. of Eastern Finland have developed new “sensing skin” technology designed to serve as an early warning system for concrete structures, allowing authorities to respond quickly to damage in everything from nuclear facilities to bridges.

Energy-level alignment at metal/organic interfaces: Tying up the loose ends

June 19, 2014 8:33 am | News | Comments

Organic semiconductors have tremendous potential for complementing conventional, inorganic semiconductors, but energy losses or barriers at the connection interfaces have blocked development efforts. Physicists have now implemented a detailed electrostatic model which is capable of covering the full phenomenological range of interfacial energy-level alignment regimes within a single, consistent framework.

Advertisement

Collecting light with artificial moth eyes

June 18, 2014 4:00 pm | News | Comments

Researchers the world over are investigating solar cells which imitate plant photosynthesis, with the goal of using sunlight and water to create synthetic fuels such as hydrogen. Scientists in Switzerland have developed this type of photoelectrochemical cell, but this one recreates a moth’s eye to drastically increase its light collecting efficiency. The cell is made of cheap raw materials: iron and tungsten oxide.

Nano-imaging probes molecular disorder

June 13, 2014 10:59 am | News | Comments

In semiconductor-based components, high mobility of charge-carrying particles is important. In organic materials, however, it is uncertain to what degree the molecular order within the thin films affects the mobility and transport of charge carriers. Using a new imaging method, researchers have shown that thin-film organic semiconductors contain regions of structural disorder that could inhibit the transport of charge and limit efficiency.

New circuit design functions at temperatures greater than 650 F

June 13, 2014 8:16 am | News | Comments

Engineers at the Univ. of Arkansas have designed integrated circuits that can survive at temperatures greater than 350 C—or roughly 660 F. The team achieved the higher performance by combining silicon carbide with wide temperature design techniques. In the world of power electronics and integrated circuits, their work represents the first implementation of a number of fundamental analog, digital and mixed-signal blocks.

Researchers introduce new benchmark for field-effect transistors

June 11, 2014 3:32 pm | News | Comments

At the 2014 Symposium on VLSI Technology in Triangle Park, N.C., researchers from the Univ. of California, Santa Barbara introduced the highest-performing class III-V metal-oxide semiconductor field-effect transistors (MOSFETs) yet demonstrated. The new MOSFETs exhibit, in an industry first, on-current, off-current and operating voltage comparable to or exceeding production silicon devices, while also staying relatively compact.

Charging portable electronics in 10 minutes

June 10, 2014 3:09 pm | by Sean Nealon, UC Riverside | News | Comments

Researchers at the University of California, Riverside Bourns College of Engineering have developed a 3-D, silicon-decorated, cone-shaped carbon-nanotube cluster architecture for lithium ion battery anodes that could enable charging of portable electronics in 10 minutes. It also increases cell capacity and reduces size and weight by 40%.

Designing ion “highway systems” for batteries

June 10, 2014 2:19 pm | News | Comments

Since the early 1970s, lithium has been the most popular element for batteries because of it’s low weight and good electrochemical potential. But it is also highly flammable. Researchers have recently married two traditional theories in materials science that can explain how the charge dictates the structure of the material. And using this they may be able to move to other materials, such as block copolymers, for use in batteries.

Nanoscale structure could boost memory performance for computer chips

June 5, 2014 12:35 pm | by Matthew Chin, UCLA | News | Comments

Researchers in California have created a nanoscale magnetic component for computer memory chips that could significantly improve their energy efficiency and scalability. The design brings spintronics one step closer to being used in computer systems by adopting a new strategy called “spin-orbit torque” that eliminates the need for a magnetic field for switching processes.

Berkeley Lab scientists create first fully 2-D field effect transistors

June 4, 2014 3:03 pm | News | Comments

Faster electronic device architectures are in the offing with the unveiling of the world’s first fully 2-D field-effect transistor (FET) by researchers at Lawrence Berkeley National Laboratory. Unlike conventional FETs made from silicon, these 2-D FETs suffer no performance drop-off under high voltages and provide high electron mobility, even when scaled to a monolayer in thickness.

New prototype transistor consumes little power

June 4, 2014 7:37 am | News | Comments

The basic element of modern electronics, namely the transistor, suffers from significant current leakage. By enveloping a transistor with a shell of piezoelectric material, which distorts when voltage is applied, researchers in the Netherlands were able to reduce this leakage by a factor of five compared to a transistor without this material.

Controlling thermal conductivities can improve energy storage

June 4, 2014 7:30 am | by Rick Kubetz, Univ. of Illinois | News | Comments

Materials that control heat flow are available with both high and low conductivities, but materials with variable and reversible thermal conductivities are rare. For the first time, researchers at the Univ. of Illinois have experimentally shown that the thermal conductivity of lithium cobalt oxide, an important material for electrochemical energy storage, can be reversibly electrochemically modulated over a considerable range.

Researchers predict the electrical response of metals to extreme pressures

June 3, 2014 10:50 am | News | Comments

Rensselaer Polytechnic Institute scientists have developed a method that can predict how subjecting metals to severe pressure can lower their electrical resistance. The finding which involved theoretical predictions, use of a supercomputer, and equipment capable of exerting pressures up to 40,000 atmospheres, could have applications in computer chips and other materials that could benefit from specific electrical resistance.

Researchers predict the electrical response of metals to extreme pressures

June 3, 2014 8:32 am | by Mary Martialay, Rensselaer Polytechnic Institute | News | Comments

Research published in the Proceedings of the National Academy of Sciences makes it possible to predict how subjecting metals to severe pressure can lower their electrical resistance, a finding that could have applications in computer chips and other materials that could benefit from specific electrical resistance.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading