Advertisement
Electrical Materials
Subscribe to Electrical Materials
View Sample

FREE Email Newsletter

Well-ordered nanorods could improve LED displays

October 25, 2012 2:16 pm | News | Comments

Synchrotron-based imaging has helped develop enhanced light-emitting diode (LED) displays using bottom-up engineering methods. Collaborative work between researchers from the University of Florida and Cornell University has produced a new way to make colloidal "superparticles" from oriented nanorods of semiconducting materials.

Researchers uncover living power cables

October 25, 2012 1:59 pm | by Robert Perkins | News | Comments

A multinational research team has discovered filamentous bacteria that function as living power cables in order to transmit electrons thousands of cell lengths away. These cells are so tiny that they are invisible to the naked eye. And yet, under the right circumstances, they form a multicellular filament that can transmit electrons across a distance as large as 1 cm as part of the filament’s respiration and ingestion processes.

Electron “sniper” targets graphene

October 25, 2012 1:45 pm | by Pete Wilton, Oxford University | News | Comments

One of the keys to exploiting graphene's potential is being able to create atomic-scale defects as these influence its electrical, chemical, magnetic, and mechanical properties. A team of materials experts have recently report a new approach to engineering graphene's atomic structure with unprecedented spatial precision.

Advertisement

Developing the next generation of microsensors

October 18, 2012 8:01 am | by Kimm Fesenmaier | News | Comments

Thanks to an ultrasensitive accelerometer—a type of motion detector—developed by researchers at the California Institute of Technology and the University of Rochester, a new class of microsensors is a step closer to reality. Instead of using an electrical circuit to gauge movements, this accelerometer uses laser light and is so sensitive it could be used to navigate shoppers through a grocery aisle or even stabilize fighter jets.

Scientists simultaneously measure electronic and optical properties of OLEDs

October 9, 2012 3:35 pm | News | Comments

A research team in Japan has succeeded in developing equipment that enables simple, high speed measurement of the band diagrams of organic semiconductor materials in atmospheric conditions. The device essentially combines a spectrophotometer system for studying band gaps with a photoemission yield system to examine ionized potential.

Interactive system detects touch and gestures on any surface

October 9, 2012 3:25 pm | News | Comments

People can let their fingers—and hands—do the talking with a new touch-activated system that projects onto walls and other surfaces and allows users to interact with their environment and each other. Developed at Purdue University, the "extended multitouch" system allows more than one person to use a surface at the same time and also enables people to use both hands, distinguishing between the right and left hand.

A robust home for qubits

October 9, 2012 12:42 pm | News | Comments

In 1937, Italian physicist Ettore Majorana predicted the existence of a class of particle that would serve as its own antiparticle. Such a particle might exist as a quasiparticle, or collection of excitons. Some scientists believe that qubits made from these Majorana “pulses”, when excited in topological materials, would be much more immune from decoherence than other qubits based on conventional particles.

Laser pulses elevate efficiency of black silicon solar cells

October 9, 2012 11:49 am | News | Comments

Because conventional solar cells lose all of the energy available from the infrared portion of the solar spectrum, researchers have been investigating photovoltaics that can convert this lost energy. Black silicon is one material which can do this, researchers in Germany have recently managed to double the efficiency of black silicon solar cells by modifying the shape of the laser pulse used to irradiate the silicon.

Advertisement

Silicon at the breaking point could be basis for efficient transistors

October 8, 2012 11:53 am | by Paul Piwnicki | News | Comments

When stretched, a layer of silicon can build up internal mechanical strain which can considerably improve its electronic properties. Using this principle, engineers have developed a method which allows them to produce 30-nm-thick highly strained wires in a silicon layer. This strain is the highest that has ever been observed in a material which can serve as the basis for electronic components.

Near-field scanning microwave microscope: Big at the nanoscale

October 1, 2012 5:52 am | News | Comments

The ability to determine the composition and physics of nanoscale materials and devices at NIST is about to improve dramatically with the arrival of a new near-field scanning microwave microscope (NSMM) design. Researchers there, using existing commercial and homemade NSMMs, have pioneered many applications, notably including determination of semiconductor dopant distribution in 2D and 3D. Now they hope to look at mechanical and magnetic resonance on the nanoscale.

Researchers demonstrate “giant” forces in super-strong nanomaterials

September 24, 2012 10:36 am | News | Comments

Optical force refers to the way beams of light can be made to attract or repel each other, as magnets do. Researchers at Missouri University of Science and Technology, in a study that gauged this type of force at the nanoscale, report that a new class of nanoscale slot waveguides pack 100 to 1,000 times more transverse optical force than conventional silicon slot waveguides.

Silicon, erbium are built on one chip for the first time

September 24, 2012 4:44 am | News | Comments

Within optical microchips, light finds its way through waveguides made of silicon, and is amplified with the help of other semiconductors, such as gallium arsenide and erbium. But until recent work in The Netherlands, no chip existed on which both silicon and erbium-doped material had been successfully integrated. The new chip now amplifies light up to 170 Gbit/sec.

Imec demonstrates electronics that flex and stretch like skin

September 18, 2012 6:12 am | News | Comments

Belgium-based semiconductor manufacturing firm imec announced Tuesday that it has integrated an ultra-thin, flexible chip with bendable and stretchable interconnects into a package that adapts dynamically to curving and bending surfaces. The resulting circuitry can be embedded in medical and lifestyle applications where user comfort and unobtrusiveness is key, such as wearable health monitors or smart clothing.

Advertisement

Demonstrated: Nanotube transistors can survive space

September 18, 2012 6:02 am | News | Comments

As part of their investigation of the effects ionizing radiation has on crystalline structures found in single-walled carbon nanotube transistors, U.S. Naval Research Laboratory engineers have recently shown these devices can stand up harsh space environments. This durability has been achieved through a combination of a hardened dielectric material and the natural isolation of the transistor.

New class of materials discovered; could boost computer memory

September 18, 2012 4:08 am | News | Comments

An international team of scientists has discovered a new class of materials that could prove to be useful in developing new methods of creating computer memory. The research team explored layered heterostructures at the atomic scale, in which different materials were deposited in layers a few atoms thick. They discovered that the new class of materials boasts an attractive property—ferroelectricity.

Less wear, longer life for memory storage device

September 12, 2012 9:42 am | News | Comments

Probe storage devices read and write data by making nanoscale marks on a surface through physical contact, but they currently have limited lifespans due to mechanical wear. A research team, led by Intel Corp., has now developed a long-lasting ultrahigh-density probe storage device by coating the tips of the probes with a thin metal film. The technology may one day extend the data density limits of conventional magnetic and optical storage.

Discovery: Quantum stress in nanofilms

September 12, 2012 9:39 am | News | Comments

Stresses arise in thin films during the manufacture of read heads in hard drives, lasers, and computer chip transistors. This can cause crystal lattice defects and eventual component failure. Researchers have recently determined that enormous stresses, up to 1,000 times atmospheric pressure, can be created in thin films by a quantum-mechanical mechanism that has been unknown until now. It is based on an effect by the name of quantum confinement.

Nanoparticle quick response code becomes banknote security feature

September 12, 2012 5:26 am | News | Comments

An invisible quick response (QR) code has been created by researchers in South Dakota in an attempt to increase security on printed documents and reduce the possibility of counterfeiting, a problem which costs governments and private industries billions of dollars each year. The QR code is made of tiny nanoparticles that have been combined with blue and green fluorescence ink, which is invisible until illuminated with laser light.

Norway scientists commercialize semiconductors grown on graphene

September 11, 2012 3:58 am | News | Comments

Scientists at the Norwegian University of Science and Technology report they have patented and are commercializing gallium arsenide (GaAs) nanowires grown on graphene. These semiconductors, which are being developed for market by the the company CrayoNano, are grown on atomically-thin graphene using molecular beam epitaxy.

Smart fabric triggers alarm at intrusion

September 6, 2012 6:26 am | News | Comments

Researchers have developed a new kind of anti-theft system, based on a woven fabric, that triggers an alarm when penetrated. Because of the fine lattice of conductive threads woven into the material, the fabric can notify the precise location of a failure, allowing the source of a break-in to be quickly identified. The invention could be significantly cheaper than other burglary detection systems.

Electronics play by new set of rules at the molecular scale

September 4, 2012 4:06 am | by Aviva Hope Rutkin | News | Comments

For several years, experts in nanotechnology have suspected—but not proven—that quantum interference effects make the conductance of a circuit with two paths up to four times higher than the conductance of a circuit with a single path. By constructing their own controllable, molecular-scale circuits, scientists at Brookhaven National Laboratory have confirmed an increase in conductance. But not as large as was anticipated.

New technique builds graphene-boron sheets without substrate

August 29, 2012 11:34 am | by Anne Ju | News | Comments

Engineers at Cornell University have invented a way to pattern single atom films of graphene and boron nitride, an insulator, without the use of a silicon substrate. The technique, called patterned regrowth, is reliant on conventional silicon photolithography technology and could lead to substrate-free circuits that would be atomically thin yet retain high tensile strength and superior electrical performance.

Single-electron diode could control heat flow in future electronics

August 29, 2012 9:20 am | News | Comments

In attempt to achieve better control of heat flows in electronic devices, a researcher in Finland has invented two new mesoscopic devices based on the behavior of single electrons in a constructed system. The inventions, which include a diode, or rectifier, specifically address the heat carried by an electron and help produce a strongly asymmetric heat flow. The next step will be to manage larger currents.

Liquid crystal film on gold produces ultra-compact color filter

August 29, 2012 7:49 am | News | Comments

Flat panel displays and mobile phones require thin, efficient, and low-cost light emitters, which are typically made from pixels wired to complex electronic circuits. Engineers in Singapore have now developed a display technology that requires a much simpler architecture: a thin perforated gold film with a liquid crystal layer.

Nanoinverters are created with low-cost additive manufacturing process

August 27, 2012 6:59 am | by Angela Herring | News | Comments

A crit­ical ele­ment in any microchip is an inverter—an elec­tronic com­po­nent that spits out zeros when it is given ones, and vice versa. Complementary metal-oxide-semiconductor, or CMOS, is the industry standard for this type of component, but still requires billions of dollars to achieve production scale. Researchers have recently pioneered a room-temperature additive process that creates a nanoscale inverter quickly and at low cost.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading