Advertisement
Electrical Materials
Subscribe to Electrical Materials
View Sample

FREE Email Newsletter

Physicists reveal novel magnetoelectric effect

February 12, 2014 8:53 am | by Chris Branam, Univ. of Arkansas | News | Comments

New research at the Univ. of Arkansas reveals a novel magnetoelectric effect that makes it possible to control magnetism with an electric field. The novel mechanism may provide a new route for using multiferroic materials for the application of RAM (random access memories) in computers and other devices, such as printers.

Fine-tuning a rainbow of colors at the nanoscale

February 11, 2014 1:34 pm | News | Comments

Engineers are increasingly turning to plasmonic color filters (PCFs) to create and control a broad spectrum of colors for imaging applications. However, PCF light transmission efficiency has been limited to only about 30%, less than half the rate of conventional filters. Researchers have now developed a new PCF scheme that achieves a transmission efficiency of 60 to 70%.

Researchers make breakthrough in battery technology

February 10, 2014 1:09 pm | News | Comments

Materials experts in Ireland have developed a new germanium nanowire-based anode that has the ability to greatly increase the capacity and lifetimes of lithium-ion batteries. The typical lithium-ion battery on the market today is based on graphite, which has a relatively low capacity for energy storage. Restructuring the germanium replacement material into nanowires produces a stable, porous battery material.

Advertisement

X-ray analysis shows thermotropic phase boundaries in classic ferroelectrics

February 6, 2014 12:52 pm | News | Comments

Lead-free BaTiO3 and KNbO3 ferroelectrics have been known and studied for more than 60 years. However, recent scanning x-ray diffraction studies at Argonne National Laboratory have shown new low-symmetry intermediate phases in these materials that lend a thermotropic character to otherwise well-known phase transitions. The findings show that these transitions in ferroelectrics are closely coupled to the underlying domain microstructure.  

Finding: Graphene ribbons are highly conductive at room temperature

February 6, 2014 12:40 pm | News | Comments

An international team of researchers from France and the United States have devised an entirely new way to synthesize graphene ribbons with defined, regular edges, allowing electrons to flow freely through the material. Demonstrating this phenomenon at room temperature, the material was shown to permit electron flow up to 200 times faster than through silicon.

New catalyst converts greenhouse gases into chemicals

January 31, 2014 11:02 am | by Karen B. Roberts, Univ. of Delaware | News | Comments

A team of researchers at the Univ. of Delaware has developed a highly selective catalyst capable of electrochemically converting carbon dioxide to carbon monoxide with 92% efficiency. The carbon monoxide then can be used to develop useful chemicals. The exceptionally high activity of the new electrocatalyst is due to its extremely large and highly curved internal surface.

Nearly everyone uses piezoelectrics, but do we know how they work?

January 31, 2014 8:00 am | News | Comments

Though piezoelectrics are a widely used technology, there are major gaps in our understanding of how they work. Researchers at NIST and in Canada believe they've learned why one of the main classes of these materials, known as relaxors, behaves in distinctly different ways from the rest and exhibit the largest piezoelectric effect. And the discovery comes in the shape of a butterfly.

Rice lab clocks “hot” electrons

January 31, 2014 7:48 am | News | Comments

Plasmonic nanoparticles developed at Rice Univ. are becoming known for their ability to turn light into heat, but how to use them to generate electricity is not nearly as well understood. Scientists at Rice are working on that, too. They suggest that the extraction of electrons generated by surface plasmons in metal nanoparticles may be optimized and have measured the time plasmon-generated electrons take moving from nanorods to graphene.

Advertisement

Flexible, transparent conductor brings foldable TVs closer to reality

January 28, 2014 11:35 am | News | Comments

Univ. of Houston researchers have developed a new stretchable and transparent electrical conductor, bringing the potential for a fully foldable cell phone or a flat-screen television that can be folded and carried under your arm closer to reality.  The researchers report that their gold nanomesh electrodes, produced by the novel grain boundary lithography, increase resistance only slightly, even at a strain of 160%.

Molecules as circuits

January 23, 2014 10:00 am | News | Comments

Silicon-based electronics have physical limits that slow and may eventually halt the miniaturization of electronic devices. One of the possible solutions is to use molecules as circuits, but their poor conduction capabilities make them unlikely candidates. Researchers in Italy says, however, that the Kondo effect, in which molecules behave like magnetic impurities, could offer a solution.

Staying cool in the nanoelectric universe by getting hot

January 22, 2014 11:40 am | by Cory Nealon, Univ. at Buffalo | News | Comments

New research hints that nanodevices in microcircuits can protect themselves from heat generation through the transformation of nanotransistors into quantum states. The finding, demonstrated in nanoscale semiconductors devices, could boost computing power without large-scale changes to electronics.

Understanding perovskite-based solar cells

January 22, 2014 9:18 am | News | Comments

In only a few years, the efficiency of perovskite-based solar cells has increased from 3% to more than 16%. However, a detailed explanation of the mechanisms of operation within this photovoltaic system is still lacking. in recent work, scientists have now uncovered the mechanism by which these novel light-absorbing semiconductors transfer electrons along their surface.

E-whiskers: Researchers develop highly sensitive tactile sensors for robotics

January 21, 2014 11:25 am | News | Comments

Researchers in California have created tactile sensors from composite films of carbon nanotubes and silver nanoparticles similar to the highly sensitive whiskers of cats and rats. These new e-whiskers respond to pressure as slight as a single Pascal, about the pressure exerted on a table surface by a dollar bill.

Advertisement

Pushing the thermal limits of nanoscale SQUIDs

January 20, 2014 6:41 pm | News | Comments

Superconducting quantum interference devices (SQUIDs) are incredibly sensitive magnetic flux sensors which have been limited in their applications because of thermal challenges at ultralow temperatures. Researchers in the U.K. have succeeded in overcoming this difficulty by introducing a new type of nanoscale SQUID based on optimized proximity effect bilayers.

Researchers develop new technique for probing subsurface electronic structure

January 15, 2014 8:30 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

“The interface is the device,” Nobel laureate Herbert Kroemer famously observed, referring to the remarkable properties to be found at the junctures where layers of different materials meet. In today’s burgeoning world of nanotechnology, the interfaces between layers of metal oxides are becoming increasingly prominent. Realizing the vast potential of these metal oxide interfaces requires detailed knowledge of their electronic structure.

Scientists discover polar domain walls in antiferroelectric materials

January 14, 2014 2:29 pm | News | Comments

For decades, increasing amounts of data have been successfully stored on media with ever-higher densities. Now, an international team has discovered a physical phenomenon that could prove suitable for use in further data aggregation. Researchers found that domain walls, which separate areas in certain crystalline materials, display a polarization, potentially allowing information to be stored in the tiniest of spaces.

Scientists cook up new electronic material

January 10, 2014 8:23 am | News | Comments

Scientists have grown sheets of an exotic material in a single atomic layer and measured its electronic structure for the first time. They discovered it’s a natural fit for making thin, flexible light-based electronics. In the study, the researchers give a recipe for making the thinnest possible sheets of the material, called molybdenum diselenide, in a precisely controlled way, using a technique that’s common in electronics manufacturing.

Eye-catching electronics

January 8, 2014 2:03 pm | by Peter Rüegg, ETH Zürich | News | Comments

Researchers in Switzerland are developing electronic components that are thinner and more flexible than before. They can even be wrapped around a single hair without damaging the electronics. This opens up new possibilities for ultra-thin, transparent sensors that are literally easy on the eye.

A cheaper method of storing solar energy

January 8, 2014 9:45 am | News | Comments

By replacing platinum with molybdenum in photoelectrochemical cells, scientists from two Swiss labs have developed a cheaper and scalable technique that can greatly improve hydrogen production through water splitting as a means of storing solar energy.

In situ bandgap tuning of graphene oxide

January 7, 2014 10:07 am | News | Comments

A research group at Japan’s National Institute for Materials Science has developed a method for creating a bandgap in graphene oxide by changing the bonding state of carbon atoms that compose graphene through reversible absorption and desorption of oxygen atoms on the graphene. This allows in situ bandgap tuning, which could help develop high-performance nanoscale devices using graphene oxide membranes.

Batteries as they are meant to be seen

December 27, 2013 10:12 am | News | Comments

Life science researchers regularly use transmission electron microscopy to study wet environments. Now, scientists at Pacific Northwest National Laboratory who are studying batteries have used the method to have applied it successfully to microscopically view electrodes while they are bathed in wet electrolytes, mimicking realistic conditions inside actual batteries.

Graphene can host exotic new quantum electronic states at its edges

December 23, 2013 11:28 am | News | Comments

According to new research at the Massachusetts Institute of Technology, graphene, under an extremely powerful magnetic field and at extremely low temperature, can effectively filter electrons according to the direction of their spin. This is something that cannot be done by any conventional electronic system and could render graphene suitable for exotic uses such as quantum computing.

Research team in Korea opens graphene bandgap

December 18, 2013 8:54 am | News | Comments

The Ulsan National Institute of Science and Technology in Korea has developed a new method for the mass production of boron/nitrogen co-doped graphene nanoplatelets, which could lead to the fabrication of a graphene-based field-effect transistor with semiconducting nature. This opens up opportunities for practical use in electronic devices.

Roots of the lithium battery problem: Dendrites start below the surface

December 18, 2013 8:28 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Lithium-ion batteries could have significantly higher energy density if their graphite anodes were to be replaced by lithium metal anodes. Hampering this change, however, has been the persistent growth of dendrites that eventually short-circuit the battery. Researchers have recently discovered that the bulk of dendrite material lies below the surface of the lithium electrode, underneath the electrode/electrolyte interface.

Theorists: New state of quantum matter may profoundly change electronics

December 17, 2013 3:32 pm | News | Comments

Stanene is the name given by researchers to 2-D sheets of tin that are only one atom thick. A Stanford Univ. team predicts stanene would be the first topological insulator to demonstrate zero heat dissipation properties at room temperature, conducting charges around its edges without any loss. Experiments are underway to create the material in the laboratory. If successful, stanene will enhance devices being built under a DARPA program.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading