Advertisement
Crystallography
Subscribe to Crystallography

The Lead

Research advances understanding of atomically thin crystal growth

November 19, 2014 9:24 am | by David Goddard, UT Knoxville | News | Comments

Univ. of Tennessee, Knoxville’s College of Engineering has made recent headlines for discoveries that, while atomically small, could impact our modern world. The team focused on the role of epilayer-substrate interactions in determining orientational relations in van der Waals epitaxy.

Fool’s gold as a solar material?

November 19, 2014 7:47 am | by David Tennebaum, Univ. of Wisconsin-Madison | News | Comments

As the installation of photovoltaic solar cells continues to accelerate, scientists are looking...

How to make a “perfect” solar absorber

September 29, 2014 8:08 am | by David L. Chandler, MIT News Office | News | Comments

The key to creating a material that would be ideal for converting solar energy to heat is tuning...

View Sample

FREE Email Newsletter

A Diamond is R&D’s “Synthetic” Best Friend

September 24, 2014 10:10 am | by Lindsay Hock, Managing Editor | Articles | Comments

Diamonds aren’t just a girl’s best friend, they’re also R&D’s best friend—or at least a new acquaintance. Many laboratories and companies are embracing synthetic diamond for its elevated super properties in applications ranging from analytical instruments and biomedical sensors to electronics and lasers to water purification.

The birth of a mineral

September 5, 2014 8:12 am | by Mary Beckman, Pacific Northwest National Laboratory | Videos | Comments

One of the most important molecules on Earth, calcium carbonate crystallizes into chalk, shells and minerals the world over. In a study led by Pacific Northwest National Laboratory, researchers used a powerful microscope that allows them to see the birth of crystals in real time, giving them a peek at how different calcium carbonate crystals form, they report in Science.

Researchers test multi-element, high-entropy alloy with surprising results

September 5, 2014 7:59 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A new concept in metallic alloy design has yielded a multiple-element material that not only tests out as one of the toughest on record, but, unlike most materials, the toughness as well as the strength and ductility of this alloy actually improves at cryogenic temperatures. This multi-element alloy was synthesized and tested through a collaboration of researchers.

Advertisement

Scientists unravel mystery of brain cell growth

August 11, 2014 8:16 am | News | Comments

In the developing brain, special proteins that act like molecular tugboats push or pull on growing nerve cells, or neurons, helping them navigate to their assigned places amidst the brain’s wiring. How a single protein can exert both a push and a pull force to nudge a neuron in the desired direction is a longstanding mystery that has now been solved by scientists from Dana-Farber Cancer Institute.

Uncovering the 3-D structure of a key neuroreceptor

August 4, 2014 10:18 am | by Nick Papageorgiu, EPFL | News | Comments

Neurons communicate with each other through electrical signals that are generated by chemicals, which bind to structures on neurons called neuroreceptors. One neuroreceptor, called 5HT3-R, is involved in a variety of neurological disorders. Scientists in Switzerland have revealed for the first time the 3-D structure of this crucial neuroreceptor.

Cell membrane proteins give up their secrets

July 17, 2014 8:03 am | Videos | Comments

Biological physicists at Rice Univ. have succeeded in analyzing transmembrane protein folding in the same way they study the proteins’ free-floating, globular cousins. They have applied energy landscape theory to proteins that are hard to view because they are inside cell membranes. The method should increase the technique’s value to researchers who study proteins implicated in diseases and possibly in the creation of drugs to treat them.

Removing parts of shape-shifting protein explains how blood clots

July 15, 2014 1:54 pm | News | Comments

Prothrombin is an inactive precursor for thrombin, a key blood-clotting protein, and is essential for life because of its ability to coagulate blood. Using x-ray crystallography, researchers have published the first image of this important protein. By removing disordered sections of the protein’s structure, scientists have revealed its underlying molecular mechanism for the first time.

Crowdsourcing the phase problem

June 17, 2014 4:26 pm | News | Comments

The term “crowdsourcing” was coined in 2006 and since then has seen its definition broadened to a wide range of activities involving a network of people. A challenging problem that might benefit from crowdsourcing, according to recently published research, is the phase problem in x-ray crystallography. Retrieving the phase information has plagued many scientists for decades when trying to determine the crystal structure of a sample.

Advertisement

Algae able to switch quantum coherence on and off

June 17, 2014 3:54 pm | News | Comments

Researchers in Australia have discovered how algae that survive in very low levels of light are able to switch on and off a weird quantum phenomenon that occurs during photosynthesis. The function in the algae of this quantum effect, known as coherence, remains a mystery, but it is thought it could help them harvest energy from the sun much more efficiently.

Scientists obtain high-speed snapshots of biomolecules

June 2, 2014 12:04 pm | News | Comments

Using synchrotron light, scientists have pioneered a new way to analyze delicate biomolecules. The new approach, called protein serial crystallography, is made possible by a new class of high-intensity x-ray sources called free-electron lasers and could reveal the atomic structure of proteins that were previously inaccessible to synchrotrons.

New method is the first to control growth of metal crystals from single atoms

May 28, 2014 11:01 am | News | Comments

Using a doped-graphene matrix to slow down and then trap atoms of the precious metal osmium, researchers in the U.K. have shown the ability to control and quantify the growth of metal-crystals. When the trapped atoms come into contact with further osmium atoms they bind together, eventually growing into 3-D metal-crystals. They have called this new technique nanocrystallometry.

Why eumelanin is a good absorber of light

May 22, 2014 7:39 am | by David L. Chandler, MIT News Office | News | Comments

Melanin—and specifically, the form called eumelanin—is the primary pigment that gives humans the coloring of their skin, hair and eyes. It protects the body from the hazards of ultraviolet and other radiation that can damage cells and lead to skin cancer, but the exact reason why the compound is so effective at blocking such a broad spectrum of sunlight has remained something of a mystery.

Chameleon crystals could make active camouflage possible

April 24, 2014 8:04 am | by Kate McAlpine, Univ. of Michigan | News | Comments

The ability to control crystals with light and chemistry could lead to chameleon-style color-changing camouflage for vehicle bodies and other surfaces. Univ. of Michigan researchers discovered a template-free method for growing shaped crystals that allows for changeable structures that could appear as different colors and patterns.

Advertisement

Electromagnetically induced transparency in a silicon nitride optomechanical crystal

April 10, 2014 8:45 am | News | Comments

Researchers from the NIST Center for Nanoscale Science and Technology have observed electromagnetically induced transparency at room temperature and atmospheric pressure in a silicon nitride optomechanical system. This work highlights the potential of silicon nitride as a material for producing integrated devices in which mechanical vibrations can be used to manipulate and modify optical signals.

New use for an old troublemaker

March 24, 2014 9:04 am | News | Comments

An unwanted byproduct from a bygone method of glass production, the crystal devitrite could find a new use as an optical diffuser in medical laser treatments, communications systems and household lighting. For years, the properties of this material were not studied because it was considered as just a troublemaker in the glass-making process and needed to be eliminated.

Data-mining for crystal “gold” at SLAC’s x-ray laser

March 17, 2014 9:21 am | by Glenn Roberts Jr., SLAC National Accelerator Laboratory | News | Comments

A new tool for analyzing mountains of data from SLAC National Accelerator Laboratory’s Linac Coherent Lightsource x-ray laser can produce high-quality images of important proteins using fewer samples. Scientists hope to use it to reveal the structures and functions of proteins that have proven elusive, as well as mine data from past experiments for new information.

Using viruses as nanoscale building blocks

February 21, 2014 11:28 am | by Mona S. Rowe, Brookhaven National Laboratory | News | Comments

From steel beams to plastic Lego bricks, building blocks come in many materials and all sizes. Today, science has opened the way to manufacturing at the nanoscale with biological materials. Potential applications range from medicine to optoelectronic devices. In a paper published in Soft Matter, scientists announced their discovery of a 2-D crystalline structure assembled from the outer shells of a virus.

Sometimes the average just isn’t good enough

February 11, 2014 8:35 am | News | Comments

Computational biologists in Austria have recently shown that the common practice of averaging is not always a good thing when it comes to analyzing protein crystal structures. A study shows that protein structures could be more dynamic and heterogeneous than current methods of x-ray analysis suggest.

New insight into an emerging genome-editing tool

February 7, 2014 7:53 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Lawrence Berkeley National Laboratory researchers have produced the first detailed look at the 3-D structure of the Cas9 enzyme and how it partners with guide RNA to interact with target DNA. The results should enhance Cas9’s value and versatility as a genome-editing tool.

Swiss cheese crystal, or high-tech sponge?

January 27, 2014 12:17 pm | by Charlotte Hsu, Univ. at Buffalo | News | Comments

The sponges of the future will do more than clean house. Picture this, for example: Doctors use a tiny sponge to soak up a drug and deliver it directly to a tumor. Chemists at a manufacturing plant use another to trap and store unwanted gases. These technologies are what a Univ. at Buffalo team had in mind when they led the design of a new material called UBMOF-1.

Success in fabrication of 3-D single-element quasicrystal

December 26, 2013 12:06 pm | News | Comments

A research group based in Japan has succeeded for the first time in fabricating a 3-D structure of a quasicrystal composed of a single element. Discovered in 1984, quasicrystals have been found in more than 100 kinds of alloy, polymer and nanoparticle systems. However, a quasicrystal composed of a single element has not yet been found.

Study shows how water dissolves stone, molecule by molecule

December 6, 2013 8:03 am | by Jade Boyd, Rice Univ. | News | Comments

Researchers have combined cutting-edge experimental techniques and computer simulations to find a new way of predicting how water dissolves crystalline structures like those found in natural stone and cement. The research could have wide-ranging impacts in diverse areas, including water quality and planning, environmental sustainability, corrosion resistance and cement construction.

Added molecules allow MOFs to conduct electricity

December 5, 2013 3:54 pm | News | Comments

Scientists from NIST and Sandia National Laboratories have added something new to a family of engineered, high-technology materials called metal-organic frameworks (MOFs): the ability to conduct electricity. This breakthrough—conductive MOFs—has the potential to make these already remarkable materials even more useful, particularly for detecting gases and toxic substances.

Team develops new template, pattern for arranging particles

November 7, 2013 11:35 am | News | Comments

An interdisciplinary team of University of Pennsylvania researchers has already developed a technique for controlling liquid crystals by means of physical templates and elastic energy, rather than the electromagnetic fields that manipulate them in televisions and computer monitors. They envision using this technique to direct the assembly of other materials, such as nanoparticles.

Crystal mysteries spiral deeper

October 9, 2013 9:47 am | News | Comments

New York Univ. chemists have discovered crystal growth complexities, which at first glance appeared to confound 50 years of theory and deepened the mystery of how organic crystals form. But, appearances can be deceiving. The researchers focused on L-cystine crystals, the chief component of a particularly nefarious kind of kidney stone.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading