Advertisement
Catalysis
Subscribe to Catalysis
View Sample

FREE Email Newsletter

Fuel-efficient cars, planes cheaper with magnesium drawn from ocean

September 20, 2013 8:20 am | News | Comments

A lightweight metal that reduces fuel use in cars and planes could be extracted from the ocean through a unique process being developed at the Pacific Northwest National Laboratory. The process could ultimately make fuel-efficient transportation more affordable and expand the American magnesium market.

Nanocrystal catalyst transforms impure hydrogen into electricity

September 18, 2013 2:20 pm | News | Comments

Carbon monoxide is a poisoning impurity in hydrogen derived from natural gas. If a catalyst could be developed that can handle this impure fuel, it could be a substantially less expensive alternative to pure hydrogen produced from water. Scientists at Brookhaven National Laboratory have used a simple, “green” process to create a new core-shell catalyst that tolerates carbon monoxide in fuel cells.

New materials improve oxygen catalysis

September 17, 2013 7:40 am | by David L. Chandler, MIT News Office | News | Comments

Researchers have found a new family of materials that provides the best-ever performance in a reaction called oxygen evolution, a key requirement for energy storage and delivery systems. The materials, called double perovskites, are a variant of a mineral that exists in abundance in the Earth’s crust. Their remarkable ability to promote oxygen evolution in a water-splitting reaction is detailed in a paper appearing in Nature Communications.

Advertisement

Researchers capture speedy chemical reaction in mid-stride

September 16, 2013 8:05 am | News | Comments

Chemists' efforts to study the inner workings of dirhodium metal complex reactions have been hindered by their extreme efficiency and speed, reacting at about 300 times per second. Now, a team of scientists report an advance that freezes one step of the process, rhodium catalysis, long enough to offer researchers a glimpse into the finer mechanism.

Clay key to high-temperature supercapacitors

September 3, 2013 11:32 pm | News | Comments

Researchers report the development of a supercapacitor that is reliable at temperatures of up to 200 C and possibly beyond. Potentially useful for powering devices for use in extreme environments, such as oil drilling, the military and space, the supercapacitor is made possible by the key ingredient, clay, which forms the basis of a new electrolyte.

Unique semiconductor-catalyst generates hydrogen fuel from sunlight

August 29, 2013 3:54 pm | by Lynn Yarris, Berkeley Lab | News | Comments

Bionic leaves that could produce fuels from nothing more than sunlight, water and carbon dioxide, with no byproducts other than oxygen, represent an ideal alternative to fossil fuels but also pose numerous scientific challenges. In a major advance, researchers at Lawrence Berkeley National Laboratory have developed a method by which molecular hydrogen-producing catalysts can be interfaced with a semiconductor that absorbs visible light.

Ideal nanocrystal produced from bulk plastics

August 20, 2013 8:08 am | News | Comments

Polyethylene, an inexpensive commodity plastic, has been successfully used by researchers to synthesize the “ideal” polymer nanocrystal. Normally, this plastic is only partly crystalline, but a new catalyst has produced material that eliminates amorphous structures. The crystalline nanostructure could prove of interest to production of new kinds of coatings.

A crystal of a different color

August 5, 2013 7:52 am | News | Comments

Chemists have unexpectedly made two differently colored crystals—one orange, the other blue—from one chemical in the same flask while studying a special kind of molecular connection called an agostic bond. The discovery is providing new insights into important industrial chemical reactions such as those that occur while making plastics and fuels.

Advertisement

Environmentally friendly battery made from wood

July 24, 2013 12:01 pm | News | Comments

Taking inspiration from trees, scientists have developed a battery made from a sliver of wood coated with tin that shows promise for becoming a tiny, long-lasting, efficient and environmentally friendly energy source. The device, developed at the Univ. of Maryland, is 1,000 times thinner than a sheet of paper.

Direct nitrogen fixation could allow low-cost energy conversion

July 24, 2013 10:15 am | News | Comments

Fixation processes free up nitrogen atoms from their diatomic form, but nitrogen does not easily react with other chemicals to form new compounds. Researchers in South Korea have invented a simple and eco-friendly method of creating nitrogen-doped graphene nanoplatelets that simultaneously facilitates the nitrogen-fixation process and creates useful tools for building dye-sensitized solar cells and fuel cells.

A new way to study, improve catalytic reactions

July 22, 2013 9:45 am | News | Comments

Catalysts are everywhere. They make chemical reactions that normally occur at extremely high temperatures and pressures possible within factories, cars and the comparatively balmy conditions within the human body. Developing better catalysts, however, is mainly a hit-or-miss process. Now, researchers have shown a way to precisely design the active elements of a certain class of catalysts.

Researchers help show new way to study, improve catalytic reactions

July 18, 2013 4:18 pm | News | Comments

Catalysts are everywhere, but developing better catalysts is mainly a hit-or-miss process. Now, a study by researchers at the University of Pennsylvania, the University of Trieste, Italy, and Brookhaven National Laboratory has shown a way to precisely design the active elements of a certain class of catalysts, showing which parameters are most critical for improving performance.

Nanoribbons research could lead to new generation of lithium-ion batteries

July 16, 2013 8:59 am | News | Comments

The Air Force Office of Scientific Research has been working with Jim Tour’s laboratory at Rice University to make graphene suitable for a variety of organic chemistry applications. Recently, the partnership made another technological advance. Their work has shown that graphene nanoribbons can significantly increase the storage capacity of lithium ion by combining these 2D ribbons with tin oxide.

Advertisement

New catalyst could replace platinum for automotive applications

July 3, 2013 9:46 am | News | Comments

The research team from the Ulsan National Institute of Science and Technology in South Korea has developed an inexpensive and scalable bio-inspired composite electrocatalyst, designed using iron phthalocyanine, a macrocyclic compound, anchored to single-walled carbon nanotubes. Under certain conditions, the new catalyst has a higher electrocatalytic activity than platinum-based catalysts, and better durability during cycling.

Diamond catalyst shows promise in breaching age-old barrier

July 1, 2013 7:52 am | News | Comments

There are a lot of small molecules people would like to convert to something useful. The current process for reducing nitrogen to ammonia is done under extreme conditions, and there is an enormous barrier to overcome to get a final product. Breaching that barrier more efficiently and reducing the huge amounts of energy used to convert nitrogen to ammonia has been a grail for the agricultural chemical industry, until now.

Iron replaces heavy metals, making hydrogenation greener

June 28, 2013 2:10 pm | News | Comments

Hydrogenation is a chemical process used in a wide range of industrial applications, from food products to petrochemicals and pharmaceuticals. The process typically involves the use of heavy metals, such as palladium or platinum, which, though efficient, are expensive and can be toxic. However, researchers have discovered way to use iron as a catalyst for hydrogenation.

New type of nanosheet offers fast pollutant degradation

June 17, 2013 6:56 pm | News | Comments

Waste from textile and paint industries often contains organic dyes such as methylene blue as pollutants. Photocatalysis is an efficient means of reducing such pollution, and molybdenum trioxide catalyzes this degradation. Researchers in India now report four methods to produce nanosheets made of very few layers of molybdenum trioxide, which are more efficient than their bulk counterparts.

Polymer-coated catalyst protects "artificial leaf"

June 17, 2013 6:42 pm | News | Comments

Electrolysis is often used to produce hydrogen that can be used for a storable fuel. Modified solar cells with highly efficient architecture can use this method to obtain hydrogen from water with the help of catalysts. But these solar cells rapidly corrode in aqueous electrolytes. By embedding the catalysts in an electrically conducting polymer, researchers have prevented this corrosion while maintaining competitive efficiency.

The science of sculpture, nano-style

June 14, 2013 9:53 am | by Angela Herring, Northeastern University | News | Comments

Nanoscopic crys­tals of sil­icon assem­bled like sky­scrapers on wafer-scale sub­strates are being intensely studied as a possible breakthrough in highly efficient battery technologies. A researcher at Northeastern University has been using computational to understand the atomic-scale interactions between the growth of nanowires and new development in this area of technology: alloyed metal droplets.

Halogenated graphene may replace platinum in low-cost fuel cells

June 10, 2013 10:56 am | News | Comments

The research team of Ulsan National Institute of Science and Technology paved a new way to affordable fuel cells with efficient metal-free electrocatalysts using edge-halogenated graphene nanoplatelets. The research team, for the first time, reportedly synthesized a series of edge-selectively halogenated graphene nanoplatelets by ball-milling graphite flake in the presence of chlorine, bromine or iodine, respectively.

The dance of the atoms

June 10, 2013 9:41 am | News | Comments

Catalysts can stop working when atoms on the surface of those materials start moving. At the Vienna University of Technology, this “dance” of the atoms has been observed and explained: A certain type of molecule initiates a clustering process, which causes the catalyst atoms, like palladium, to ball together and disappear from contact with the surrounding gas.

New boron-silicon electrode could boost lithium-ion battery capacity

June 6, 2013 2:04 pm | News | Comments

Silicon can accept ten times more lithium than the graphite used in the electrodes in lithium-ion batteries, but silicon also expands, shortening electrode life. Looking for an alternative to pure silicon, scientists in Germany have now synthesized a novel framework structure consisting of boron and silicon, which could serve as electrode material.

Catalyst could jumpstart e-cars, green energy

June 4, 2013 1:08 pm | News | Comments

Los Alamos National Laboratory scientists have designed a new type of nanostructured-carbon-based catalyst that could pave the way for reliable, economical next-generation batteries and alkaline fuel cells, providing for practical use of wind- and solar-powered electricity, as well as enhanced hybrid electric vehicles.

Ultraselective process discovered to make valuable chemical from biomass

May 29, 2013 7:29 am | News | Comments

Chemical engineering researchers Wei Fan, Paul Dauenhauer, and colleagues at the University of Massachusetts Amherst report that they’ve discovered a new chemical process to make p-xylene, an important ingredient of common plastics, at 90% yield from lignocellulosic biomass, the highest yield achieved to date.

Platinum nanoparticles may keep fruit fresh longer

May 13, 2013 8:16 am | News | Comments

Ripening fruit, vegetables, and flowers release ethylene, which works as a plant hormone. Ethylene accelerates ripening, so other unripened fruit also begins to ripen—fruit and vegetables quickly spoil and flowers wilt. researchers in Japan have now introduced a new catalytic system for the fast and complete degradation of ethylene. This could keep the air in warehouses ethylene-free, keeping perishable products fresh longer.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading