Advertisement
Catalysis
Subscribe to Catalysis
View Sample

FREE Email Newsletter

Process holds promise for production of synthetic gasoline

December 3, 2013 7:45 am | News | Comments

A chemical system developed by researchers at the Univ. of Illinois at Chicago can efficiently perform the first step in the process of creating syngas, gasoline and other energy-rich products out of carbon dioxide. A novel “co-catalyst” system using inexpensive, easy-to-fabricate carbon-based nanofiber materials efficiently converts carbon dioxide to carbon monoxide, a useful starting material for synthesizing fuels.

Scientists identify new catalyst for cleanup of nitrites

November 26, 2013 7:41 am | News | Comments

Chemical engineers at Rice Univ. have found a new catalyst that can rapidly break down nitrites, a common and harmful contaminant in drinking water that often results from overuse of agricultural fertilizers. Nitrites and their more abundant cousins, nitrates, are inorganic compounds that are often found in both groundwater and surface water. The compounds are a health hazard.

Copper promises cheaper, sturdier fuel cells

November 22, 2013 11:01 am | News | Comments

Converting solar energy into storable fuel remains one of the greatest challenges of modern chemistry. Chemists have commonly tried to use indium tin oxide (ITO) because it has transparency, but it also expensive and rare. Researchers at Duke Univ. has created something they hope can replace ITO: copper nanowires fused in a see-through film.

Advertisement

Enhancing lithium-ion battery performance

November 20, 2013 9:41 am | News | Comments

Scientists worldwide are seeking ways to improve the power density, durability and overall performance of lithium-ion (Li-ion) batteries. Researchers in Japan now report an advance in Li-ion battery technology that yields a significantly higher-performing battery. The difference is a cathode positive electrode of lithium cobalt oxide in which the compound's individual grains are aligned in a specific orientation.

Scientists create low-cost, long-lasting water splitter from silicon and nickel

November 15, 2013 11:10 am | by Mark Shwartz, Stanford Univ. | News | Comments

Stanford Univ. researchers have developed an inexpensive device that uses light to split water into oxygen and clean-burning hydrogen. The goal is to supplement solar cells with hydrogen-powered fuel cells that can generate electricity when the sun isn't shining or demand is high.

Professor invents a flexible battery

November 5, 2013 2:33 pm | by Robert Florida, NJIT | News | Comments

Researchers at NJIT have developed a flexible battery made with carbon nanotubes that could potentially power electronic devices with flexible displays. According to its developers, this battery can be made as small as a pinhead or as large as a carpet in a living room.

Bioelectrochemical systems: Electricity generators of the future?

October 28, 2013 7:58 am | News | Comments

Billions of euros are spent treating trillions of liters of wastewater every year, consuming substantial amounts of energy. However, this wastewater could act as a renewable resource, saving significant quantities of energy and money, as it contains organic pollutants which can be used to produce electricity, hydrogen and high-value chemicals, such as caustic soda.

Gold nanoparticles give an edge in recycling carbon dioxide

October 25, 2013 8:00 am | News | Comments

By tuning gold nanoparticles to just the right size, researchers from Brown Univ. have developed a catalyst that selectively converts carbon dioxide to carbon monoxide, an active carbon molecule that can be used to make alternative fuels and commodity chemicals.

Advertisement

Futuristic copper foam batteries get more bang for the buck

October 24, 2013 8:39 am | News | Comments

Amy Prieto, a chemist at Colorado State Univ. leads a start-up company with the goal of developing a lithium-ion battery that should be safer, cheaper, faster-charging, and more environmentally friendly than conventional batteries now on the market. The key to the technology is copper foam which is easy to manufacture and has high power density.

Chemists use MRI to peek at temperatures of gases inside catalytic reactors

October 24, 2013 8:29 am | News | Comments

Univ. of California, Los Angeles chemists, for the first time, have employed magnetic resonance imaging to better measure the temperature of gases inside a catalytic reactor. The research, a major step toward bridging the gap between laboratory studies and industrial catalysis, could help improve the design and environmental impact of catalytic reactors.

Cheap metals can be used to make products from petroleum

October 21, 2013 2:30 pm | News | Comments

A new process developed at the Univ. of Illinois at Chicago suggests that base metals may be used as catalysts in the manufacture of countless products made from petroleum-based raw materials. The metals, copper and iron, could potentially replace a rare and expensive metal catalyst currently required for the chemical process called borylation.

Why lithium-ion-batteries fail

October 18, 2013 9:48 am | by Peter Rüegg, ETH Zurich | News | Comments

Materials in lithium ion battery electrodes expand and contract during charge and discharge. These volume changes drive particle fracture, which shortens battery lifetime. A group of scientists has quantified this effect for the first time using high-resolution 3D movies recorded using x-ray tomography at the Swiss Light Source.

Dow Chemical sells unit for $500 million

October 11, 2013 8:39 am | by The Associated Press | News | Comments

Dow Chemical Co. is selling its global polypropylene licensing and catalysts business to W.R. Grace & Co. for $500 million. The sale includes Dow Chemical's polypropylene catalysts manufacturing plant in Norco, La., and customer contracts, licenses, intellectual property and inventory.

Advertisement

Small-molecule catalyst does the work of many enzymes

October 4, 2013 7:49 am | News | Comments

Researchers report that they have created a man-made catalyst that is an “enzyme mimic.” Unlike most enzymes, which act on a single target, the new catalyst can alter the chemical profiles of numerous types of small molecules. The catalyst—and others like it—will greatly speed the process of drug discovery, the researchers say.

Spinning CDs to clean sewage water

September 24, 2013 8:46 am | News | Comments

By coating compact disks in photocatalytic compounds and spinning them to clean water, scientists in Taiwan have found a potential new use for old music CDs. The disks, equipped with tiny zinc oxide nanorods, are able to break down more than 95% of the contaminants in methyl orange dye, a benchmark organic compound for testing photocatalytic reactions.

Fuel-efficient cars, planes could be cheaper with magnesium drawn from ocean

September 20, 2013 1:03 pm | News | Comments

Magnesium is a lightweight metal used in cars and planes to improve their fuel efficiency. But it currently requires a lot of energy and money to produce the metal. Engineers at Pacific Northwest National Laboratory is developing a new production method that would be 50% more energy efficient than the United States' current production process.

Fuel-efficient cars, planes cheaper with magnesium drawn from ocean

September 20, 2013 8:20 am | News | Comments

A lightweight metal that reduces fuel use in cars and planes could be extracted from the ocean through a unique process being developed at the Pacific Northwest National Laboratory. The process could ultimately make fuel-efficient transportation more affordable and expand the American magnesium market.

Nanocrystal catalyst transforms impure hydrogen into electricity

September 18, 2013 2:20 pm | News | Comments

Carbon monoxide is a poisoning impurity in hydrogen derived from natural gas. If a catalyst could be developed that can handle this impure fuel, it could be a substantially less expensive alternative to pure hydrogen produced from water. Scientists at Brookhaven National Laboratory have used a simple, “green” process to create a new core-shell catalyst that tolerates carbon monoxide in fuel cells.

New materials improve oxygen catalysis

September 17, 2013 7:40 am | by David L. Chandler, MIT News Office | News | Comments

Researchers have found a new family of materials that provides the best-ever performance in a reaction called oxygen evolution, a key requirement for energy storage and delivery systems. The materials, called double perovskites, are a variant of a mineral that exists in abundance in the Earth’s crust. Their remarkable ability to promote oxygen evolution in a water-splitting reaction is detailed in a paper appearing in Nature Communications.

Researchers capture speedy chemical reaction in mid-stride

September 16, 2013 8:05 am | News | Comments

Chemists' efforts to study the inner workings of dirhodium metal complex reactions have been hindered by their extreme efficiency and speed, reacting at about 300 times per second. Now, a team of scientists report an advance that freezes one step of the process, rhodium catalysis, long enough to offer researchers a glimpse into the finer mechanism.

Clay key to high-temperature supercapacitors

September 3, 2013 11:32 pm | News | Comments

Researchers report the development of a supercapacitor that is reliable at temperatures of up to 200 C and possibly beyond. Potentially useful for powering devices for use in extreme environments, such as oil drilling, the military and space, the supercapacitor is made possible by the key ingredient, clay, which forms the basis of a new electrolyte.

Unique semiconductor-catalyst generates hydrogen fuel from sunlight

August 29, 2013 3:54 pm | by Lynn Yarris, Berkeley Lab | News | Comments

Bionic leaves that could produce fuels from nothing more than sunlight, water and carbon dioxide, with no byproducts other than oxygen, represent an ideal alternative to fossil fuels but also pose numerous scientific challenges. In a major advance, researchers at Lawrence Berkeley National Laboratory have developed a method by which molecular hydrogen-producing catalysts can be interfaced with a semiconductor that absorbs visible light.

Ideal nanocrystal produced from bulk plastics

August 20, 2013 8:08 am | News | Comments

Polyethylene, an inexpensive commodity plastic, has been successfully used by researchers to synthesize the “ideal” polymer nanocrystal. Normally, this plastic is only partly crystalline, but a new catalyst has produced material that eliminates amorphous structures. The crystalline nanostructure could prove of interest to production of new kinds of coatings.

A crystal of a different color

August 5, 2013 7:52 am | News | Comments

Chemists have unexpectedly made two differently colored crystals—one orange, the other blue—from one chemical in the same flask while studying a special kind of molecular connection called an agostic bond. The discovery is providing new insights into important industrial chemical reactions such as those that occur while making plastics and fuels.

Environmentally friendly battery made from wood

July 24, 2013 12:01 pm | News | Comments

Taking inspiration from trees, scientists have developed a battery made from a sliver of wood coated with tin that shows promise for becoming a tiny, long-lasting, efficient and environmentally friendly energy source. The device, developed at the Univ. of Maryland, is 1,000 times thinner than a sheet of paper.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading