Advertisement
Carbon Nanotubes & Graphene
Subscribe to Carbon Nanotubes & Graphene

The Lead

Could elastic bands monitor patients’ breathing?

August 20, 2014 11:39 am | News | Comments

Research published in ACS Nano identifies a new type of sensor that could monitor body movement and advance the future of global health care. Although body motion sensors already exist in different forms, they have not been widely used due to their complexity and cost of production.

Test reveals purity of graphene

August 14, 2014 8:02 am | by Mike Williams, Rice Univ. | News | Comments

Graphene may be tough, but those who handle it had better be tender. The environment...

Custom-made nanotubes

August 13, 2014 12:39 pm | News | Comments

Researchers in Europe have succeeded for the first...

Could hemp nanosheets topple graphene for making the ideal supercapacitor?

August 12, 2014 12:34 pm | News | Comments

As hemp makes a comeback in the U.S. after a...

View Sample

FREE Email Newsletter

On the edge of graphene

August 11, 2014 1:50 pm | News | Comments

Researchers at the National Physical Laboratory in the U.K. have discovered that the conductivity at the edges of graphene devices is different to the central material. The group used local scanning electrical techniques to examine the local nanoscale electronic properties of epitaxial graphene, in particular the differences between the edges and central parts of graphene Hall bar devices.

Scientists use lasers, carbon nanotubes to look inside living brains

August 8, 2014 8:19 am | by Bjorn Carey, Stanford News Service | News | Comments

Some of the most damaging brain diseases can be traced to irregular blood delivery in the brain. Now, Stanford Univ. chemists have employed lasers and carbon nanotubes to capture an unprecedented look at blood flowing through a living brain. The technique was developed for mice but could one day be applied to humans, potentially providing vital information in the study of stroke and migraines.

Artificial retina: Physicists develop an interface to the optical nerve

August 7, 2014 9:49 am | News | Comments

Graphene has excellent biocompatibility thanks to its great flexibility and chemical durability, and its conducting properties suggest uses for prosthetic devices in humans. Physicists are now developing key components of an artificial retina made of graphene. These retina implants may one day serve as optical prostheses for blind people whose optical nerves are still intact.

Advertisement

Synthesis of structurally pure carbon nanotubes using molecular seeds

August 7, 2014 9:34 am | News | Comments

For the first time, researchers have succeeded in "growing" single-wall carbon nanotubes (CNT) with a single predefined structure, and hence with identical electronic properties. The method involved self-assembly of tailor-made organic precursor molecules on a platinum surface. In the future, carbon nanotubes of this kind may be used in ultra-sensitive light detectors and ultra-small transistors.

Used-cigarette butts offer energy storage solution

August 5, 2014 11:08 am | News | Comments

A group of scientists from South Korea have converted used-cigarette butts into a high-performing material that could be integrated into computers, handheld devices, electrical vehicles and wind turbines to store energy. In published research, the team has demonstrated that the cellulose acetate fibres that cigarette filters are mostly composed of could be transformed into a carbon-based material using pyrolysis.

Light pulses control graphene’s electrical behavior

August 4, 2014 8:10 am | by David L. Chandler, MIT News Office | News | Comments

Graphene has become a focus of research on a variety of potential uses. Now researchers at Massachusetts Institute of Technology have found a way to control how the material conducts electricity by using extremely short light pulses, which could enable its use as a broadband light detector.

Tough foam from tiny sheets

July 29, 2014 12:59 pm | by Mike Williams, Rice Univ. | News | Comments

Tough, ultra-light foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice Univ. In microscopic images, the foam dubbed “GO-0.5BN” looks like a nanoscale building, with floors and walls that reinforce each other. The structure consists of a pair of 2-D materials: floors and walls of graphene oxide that self-assemble with the assistance of hexagonal boron nitride platelets.

A new way to make microstructured surfaces

July 29, 2014 12:49 pm | by David L. Chandler, MIT News Office | News | Comments

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel 3-D textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a variety of useful properties—including controllable mechanical stiffness and strength, or the ability to repel water in a certain direction.

Advertisement

Graphene surfaces on photonic racetracks

July 28, 2014 11:12 am | News | Comments

Scientists in the U.K. recently published work that describes how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.  These waveguide loops, called “racetrack resonators” because of their shape, could help form a device architecture that would make graphene biochemical sensors a reality.

Understanding graphene’s electrical properties on an atomic level

July 22, 2014 7:38 am | by Evan Lerner, Univ. of Pennsylvania | Videos | Comments

Graphene, a material that consists of a lattice of carbon atoms, one atom thick, is widely touted as being the most electrically conductive material ever studied. However, not all graphene is the same. With so few atoms comprising the entirety of the material, the arrangement of each one has an impact on its overall function.

Steam from the sun

July 21, 2014 7:55 am | by Jennifer Chu, MIT News Office | News | Comments

A new material structure developed at Massachusetts Institute of Technology generates steam by soaking up the sun. The structure—a layer of graphite flakes and an underlying carbon foam—is a porous, insulating material structure that floats on water. When sunlight hits the structure’s surface, it creates a hotspot in the graphite, drawing water up through the material’s pores, where it evaporates as steam.

Researchers create new method to draw molecules from live cells

July 18, 2014 12:30 pm | by Jeannie Kever, Univ. of Houston | News | Comments

Most current methods of identifying intracellular information result in the death of the individual cells, making it impossible to continue to gain information and assess change over time. Using magnetized carbon nanotubes, scientists in Texas have devised a new method for extracting molecules from live cells without disrupting cell development.

Researchers develop simple procedure to obtain nanosized graphene

July 16, 2014 9:34 am | Videos | Comments

A team including scientists from Spain and from IBM Research in Switzerland have published work which describes an extremely simple method to obtain high quality nanographenes from easily available organic compounds. This method is based on the reactivity of a group of molecules named arynes, which can act as "molecular glue" to paste graphene fragments together.

Advertisement

From stronger Kevlar to better biology

July 14, 2014 9:17 am | by Angela Herring, Northeastern Univ. | News | Comments

Mar­ilyn Minus, a materials expert and assis­tant pro­fessor at Northeastern Univ., is exploring directed self-assembly methods using carbon nanotubes and polymer solutions. So far, she’s used the approach to develop a polymer com­posite mate­rial that is stronger than Kevlar yet much lighter and less expen­sive. Minus is now expanding this work to incor­po­rate more polymer classes: flame retar­dant mate­rials and bio­log­ical molecules.

Chemists develop technology to produce clean-burning hydrogen fuel

July 14, 2014 9:12 am | News | Comments

Rutgers Univ. researchers have developed a technology that could overcome a major cost barrier to make clean-burning hydrogen fuel. The new catalyst is based on carbon nanotubes and may rival cost-prohibitive platinum for reactions that split water into hydrogen and oxygen.

Oxygen extends graphene’s reach

July 11, 2014 1:05 pm | News | Comments

The addition of elements to the surface of graphene can modify the material’s physical and chemical properties, potentially extending the range of possible applications. Recently performed theoretical calculations at RIKEN in Japan show that the addition of oxygen to graphene on copper substrates results in enhanced functionalization. The resulting structure, known as an enolate, make support applications that require catalytic response.

With "ribbons" of graphene, width matters

July 7, 2014 9:39 am | by Laura L. Hunt, UW-Milwaukee | News | Comments

Using graphene ribbons just several atoms across, a group of researchers at the Univ. of Wisconsin-Milwaukee has found a novel way to “tune” the material, causing the extremely efficient conductor of electricity to act as a semiconductor. By imaging the ribbons with scanning-tunneling microscopy, researchers have confirmed how narrow the ribbon width must be. Achieving less than 10 nm in width is a big challenge.

A smashing new look at nanoribbons

July 1, 2014 9:56 am | News | Comments

Recent research at the Rice Univ. lab of materials scientist Pulickel Ajayan has discovered that nanotubes that hit a target end first turn into mostly ragged clumps of atoms. But nanotubes that happen to broadside the target unzip into handy ribbons that can be used in composite materials for strength and applications that take advantage of their desirable electrical properties.

Interlayer distance in graphite oxide gradually changes when water is added

June 30, 2014 2:21 pm | News | Comments

Physicists in Europe have solved a mystery that has puzzled scientists for half a century. it has long been known that the distance between the graphene oxide layers depends on the humidity, not the actual amount of water added. But now, with the help of powerful microscopes, it can be seen how distance between graphite oxide layers gradually increases when water molecules are added, and why this phenomenon occurs.

More pores for more power

June 30, 2014 2:10 pm | News | Comments

Researchers in Germany have produced a new material the size of a sugar cube that has a surface area equivalent to more than seven tennis courts. This novel type of nanofiber has a highly ordered and porous structure gives it an extraordinarily high surface-to-volume ratio and could be a key enabling technology for lithium-sulfur batteries.

Scientists develop force sensor from carbon nanotubes

June 30, 2014 2:05 pm | News | Comments

A group of researchers from Russia, Belarus and Spain, including MIPT professor Yury Lozovik, have developed a microscopic force sensor based on carbon nanotubes. The device consists of two nanotubes placed so that their open ends are opposite to each other. Voltage of just 10 nA is then applied to the nanocircuit and force is measured by the change in position of the nanotubes.

Watching nanoscale fluids flow

June 27, 2014 7:48 am | by Kimm Fesenmaier, Caltech | News | Comments

At the nanoscale, where objects are measured in billionths of meters and events transpire in trillionths of seconds, things do not always behave as our experiences with the macro world might lead us to expect. Water, for example, seems to flow much faster within carbon nanotubes than classical physics says should be possible. Now imagine trying to capture movies of these almost imperceptibly small nanoscale movements.

New synthesis method generates functionalized carbon nanolayers

June 25, 2014 8:10 am | News | Comments

An international team has developed an elegant method for producing self-organized and functionalized carbon nanolayers and equipping them chemically with a range of functions. The effort depended on the development of a special compound, the molecules of which were aligned perfectly in parallel to each other in a single self-organized layer, like the bristles on a brush.

Measuring the mass of “massless” electrons

June 23, 2014 2:57 pm | News | Comments

The electrons in graphene behave as “massless” particles, yet these electrons also seem to have dual personalities. Phenomena observed in the field of graphene plasmonics suggest that when the electrons move collectively, they must exhibit mass. After two years of effort, researchers at Harvard Univ. have successfully measured the collective mass of “massless” electrons in motion in graphene.

Super-stretchable yarn is made of graphene

June 23, 2014 12:30 pm | News | Comments

According to researchers, a simple, scalable method of making strong, stretchable graphene oxide fibers that are easily scrolled into yarns and have strengths approaching that of Kevlar is possible. An international collaboration has recently produced graphene oxide yarn fibers much stronger than other carbon fibers.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading