Advertisement
Carbon Nanotubes & Graphene
Subscribe to Carbon Nanotubes & Graphene

The Lead

How to best harness solar power

March 2, 2015 10:48 am | by Dawn Fuller, Univ. of Cincinnati | News | Comments

A research partnership is reporting advances on how to make solar cells stronger, lighter, more flexible and less expensive when compared with the current silicon or germanium technology on the market. The researchers discovered how a blend of conjugated polymers resulted in structural and electronic changes that increased efficiency three-fold, by incorporating graphene in the active layer of the carbon-based materials.

Aerogel catalyst shows promise for fuel cells

March 2, 2015 7:54 am | by Mike Williams, Rice Univ. | News | Comments

Graphene nanoribbons formed into a 3-D aerogel and enhanced with boron and nitrogen are...

Boosting carbon’s stability for better lithium-air batteries

February 25, 2015 9:15 am | by Ed Hayward, Boston College | News | Comments

To power a car so it can travel hundreds of miles at a time, lithium-ion batteries of the future...

Graphene shows potential as anticancer therapeutic strategy

February 25, 2015 8:11 am | by Jamie Brown, Univ. of Manchester | News | Comments

Univ. of Manchester scientists have used graphene to target and neutralize cancer stem cells...

View Sample

FREE Email Newsletter

Semiconductor works better when hitched to graphene

February 20, 2015 8:41 am | by SLAC Office of Communications | News | Comments

Graphene shows great promise for future electronics, advanced solar cells, protective coatings and other uses, and combining it with other materials could extend its range even further. Experiments at the SLAC National Accelerator Laboratory looked at the properties of materials that combine graphene with a common type of semiconducting polymer.

New technique developed for making graphene competitor, molybdenum disulphide

February 20, 2015 7:59 am | by Evan Lerner, Univ. of Pennsylvania | News | Comments

Graphene is often touted as a replacement for silicon in electronic devices due to its extremely high conductivity and unbeatable thinness. But graphene isn’t the only 2-D material that could play such a role. Univ. of Pennsylvania researchers have made an advance in manufacturing one such material, molybdenum disulphide.

Novel crumpling method takes flat graphene from 2-D to 3-D

February 18, 2015 7:54 am | by Rick Kubetz, Univ. of Illinois, Urbana-Champaign | News | Comments

Researchers at the Univ. of Illinois at Urbana-Champaign have developed a unique single-step process to achieve 3-D texturing of graphene and graphite. Using a commercially available thermally activated shape-memory polymer substrate, this 3-D texturing, or "crumpling," allows for increased surface area and opens the doors to expanded capabilities for electronics and biomaterials.

Advertisement

Gold nanotubes launch a three-pronged attack on cancer cells

February 13, 2015 9:10 am | by Sarah Reed, Univ. of Leeds | News | Comments

Scientists have shown that gold nanotubes have many applications in fighting cancer: internal nanoprobes for high-resolution imaging, drug delivery vehicles and agents for destroying cancer cells. The study, published in Advanced Functional Materials, details the first successful demonstration of the biomedical use of gold nanotubes in a mouse model of human cancer.

Nanotubes self-organize and wiggle

February 10, 2015 1:41 pm | by Siv Schwink, Univ. of Illinois | News | Comments

The second law of thermodynamics tells us that all systems evolve toward a state of maximum entropy, wherein all energy is dissipated as heat, and no available energy remains to do work. Since the mid-20th century, research has pointed to an extension of the second law for nonequilibrium systems.

Buckyballs offer environmental benefits

February 10, 2015 9:25 am | by Mike Williams, Rice Univ. | News | Comments

Treated buckyballs not only remove valuable but potentially toxic metal particles from water and other liquids, but also reserve them for future use, according to scientists at Rice Univ. The Rice lab of chemist Andrew Barron has discovered that carbon-60 fullerenes (buckyballs) that have gone through the chemical process known as hydroxylation aggregate into pearl-like strings as they bind to and separate metals from solutions.

Penta-graphene: A new structural variant of carbon, discovered

February 4, 2015 8:17 am | by Brian McNeill, Virginia Commonwealth Univ. | News | Comments

Researchers at Virginia Commonwealth Univ. and universities in China and Japan have discovered a new structural variant of carbon called "penta-graphene", a very thin sheet of pure carbon that has a unique structure inspired by a pentagonal pattern of tiles found paving the streets of Cairo.

Winding borders may enhance graphene

February 3, 2015 9:20 am | by Mike Williams, Rice Univ. | News | Comments

Far from being a defect, a winding thread of odd rings at the border of two sheets of graphene has qualities that may prove valuable to manufacturers, according to Rice Univ. scientists. Graphene rarely appears as a perfect lattice of chicken wire-like six-atom rings. When grown via chemical vapor deposition, it usually consists of “domains,” or separately grown sheets that bloom outward from hot catalysts until they meet up.

Advertisement

Worms lead way to test nanoparticle toxicity

February 3, 2015 8:12 am | by Mike Williams, Rice Univ. | News | Comments

The lowly roundworm is the star of an ambitious Rice Univ. project to measure the toxicity of nanoparticles. The low-cost, high-output study measures the effects of many types of nanoparticles not only on individual organisms but also on entire populations. The researchers tested 20 types of nanoparticles and determined that five, including the carbon-60 molecules (“buckyballs”) discovered at Rice in 1985, showed little to no toxicity.

Carbon nanoballs can greatly contribute to sustainable energy supply

January 28, 2015 9:07 am | by Johanna Wilde, Chalmers Univ. of Technology | News | Comments

Researchers at Chalmers Univ. of Technology have discovered that the insulation plastic used in high-voltage cables can withstand a 26% higher voltage if nanometer-sized carbon balls are added. This could result in enormous efficiency gains in the power grids of the future, which are needed to achieve a sustainable energy system.

Researchers make magnetic graphene

January 26, 2015 10:22 am | by Univ. of California, Riverside | News | Comments

Graphene has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic impurities, but this doping tends to disrupt graphene's electronic properties. Now a team of physicists at the Univ. of California, Riverside has found an ingenious way to induce magnetism in graphene while also preserving graphene's electronic properties.

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons

January 26, 2015 8:51 am | by Institute of Transformative Biomolecules, Nagoya Univ. | News | Comments

A team of chemists at Nagoya Univ. has synthesized novel transition metal-complexed cycloparaphenylenes (CPPs) that enable selective monofunctionalization of CPPs for the first time, opening doors to the construction of unprecedented nanocarbons. The team has synthesized novel CPP chromium complexes and demonstrated their utility in obtaining monofunctionalized CPPs, which could be useful for making carbon nanotubes.

Graphene edges can be tailor-made

January 23, 2015 3:27 pm | by Mike Williams, Rice Univ. | News | Comments

Theoretical physicists at Rice Univ. are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get the edges they need for applications. New research shows it should be possible to control the edge properties of graphene nanoribbons by controlling the conditions under which the nanoribbons are pulled apart.

Advertisement

Carbon nanotube finding could lead to flexible electronics with longer battery life

January 14, 2015 4:04 pm | by Adam Malecek, Univ. of Wisconsin-Madison | News | Comments

Univ. of Wisconsin-Madison materials engineers have made a significant leap toward creating higher-performance electronics with improved battery life and the ability to flex and stretch. The team has reported the highest-performing carbon nanotube transistors ever demonstrated. In addition to paving the way for improved consumer electronics, this technology could also have specific uses in industrial and military applications.

Laser-induced graphene “super” for electronics

January 14, 2015 10:34 am | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. scientists advanced their recent development of laser-induced graphene by producing and testing stacked, 3-D supercapacitors, energy storage devices that are important for portable, flexible electronics. The Rice laboratory of chemist James Tour discovered last year that firing a laser at an inexpensive polymer burned off other elements and left a film of porous graphene.

Manipulating nanoribbons at the molecular level

January 12, 2015 12:44 pm | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

Narrow strips of graphene called nanoribbons exhibit extraordinary properties that make them important candidates for future nanoelectronic technologies. A barrier to exploiting them, however, is the difficulty of controlling their shape at the atomic scale, a prerequisite for many possible applications.

“Flying carpet” technique uses graphene to deliver one-two punch of anticancer drugs

January 6, 2015 10:02 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

An international team of researchers has developed a drug delivery technique that utilizes graphene strips as “flying carpets” to deliver two anticancer drugs sequentially to cancer cells, with each drug targeting the distinct part of the cell where it will be most effective. The technique was found to perform better than either drug in isolation when tested in a mouse model targeting a human lung cancer tumor.

Freshman-level chemistry solves the solubility mystery of graphene oxide films

January 5, 2015 3:21 pm | by Amanda Morris, Northwestern Univ. | News | Comments

A Northwestern Univ.-led team recently found the answer to a mysterious question that has puzzled the materials science community for years—and it came in the form of some surprisingly basic chemistry. Like many scientists, Jiaxing Huang didn't understand why graphene oxide films were highly stable in water.

Turning hydrogen into “graphene”

December 16, 2014 2:13 pm | by Carnegie Institute | News | Comments

New work from Carnegie Institute's Ivan Naumov and Russell Hemley delves into the chemistry underlying some surprising recent observations about hydrogen, and reveals remarkable parallels between hydrogen and graphene under extreme pressures.

New findings could point the way to “valleytronics”

December 15, 2014 1:41 pm | by David L. Chandler, MIT News Office | News | Comments

New findings could provide a pathway toward a kind of 2-D microchip that would make use of a characteristic of electrons other than their electrical charge, as in conventional electronics. The new approach is dubbed “valleytronics,” because it makes use of properties of an electron that can be depicted as a pair of deep valleys on a graph of their traits.

Uncovering the Secrets Governing CVD of Graphene

December 15, 2014 11:24 am | by Mark H. Wall, Thermo Fisher Scientific, Madison, Wisc., Robert M. Jacobberger, Dept. of Material Science and Engineering, Univ. of Wisconsin-Madison and Elena Polyakova, Graphene Laboratories, Ronkonkoma, N.Y. | Thermo Fisher Scientific | Articles | Comments

One major challenge currently facing the graphene industry is difficulty in controlling the quality of graphene sheets when produced over large areas using industrial scale techniques. The key to solving this challenge lies in gaining a thorough understanding of the synthetic methods used to fabricate macro-sized single-layer graphene films.

Team combines logic, memory to build “high-rise” chip

December 15, 2014 7:49 am | by Tom Abate, Stanford Engineering | News | Comments

For decades, the mantra of electronics has been smaller, faster, cheaper. Today, Stanford Univ. engineers add a fourth word: taller. A Stanford team revealed how to build high-rise chips that could leapfrog the performance of the single-story logic and memory chips on today's circuit cards.

First pictures of baby nanotubes

December 2, 2014 11:18 am | by NIST | News | Comments

Single-walled carbon nanotubes are loaded with desirable properties. In particular, the ability to conduct electricity at high rates of speed makes them attractive for use as nanoscale transistors. But this and other properties are largely dependent on their structure, and their structure is determined when the nanotube is just beginning to form.

Microbullet hits confirm graphene’s strength

December 1, 2014 7:52 am | by Mike Williams, Rice Univ. | Videos | Comments

Graphene’s great strength appears to be determined by how well it stretches before it breaks, according to Rice Univ. scientists who tested the material’s properties by peppering it with microbullets. The 2-D carbon honeycomb discovered a decade ago is thought to be much stronger than steel. But the scientists didn’t need even a pound of graphene to prove the material is on average 10 times better than steel at dissipating kinetic energy.

Protons fuel graphene prospects

November 26, 2014 9:11 am | by Univ. of Manchester | News | Comments

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, Univ. of Manchester researchers have found. Published in Nature, the discovery could revolutionize fuel cells and other hydrogen-based technologies as they require a barrier that only allow protons to pass through.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading