Advertisement
Biomaterials
Subscribe to Biomaterials

The Lead

Platelets modulate clotting behavior by “feeling” their surroundings

September 25, 2014 8:31 am | by John Toon, Georgia Institute of Technology | News | Comments

Platelets, the tiny cell fragments whose job it is to stop bleeding, are very simple. They don’t have a cell nucleus. But they can “feel” the physical environment around them, researchers at Emory Univ. and Georgia Tech have discovered. Platelets respond to surfaces with greater stiffness by increasing their stickiness, the degree to which they “turn on” other platelets and other components of the clotting system, the researchers found.

Engineered proteins stick like glue, even in water

September 22, 2014 1:46 pm | by Anne Trafton, MIT | News | Comments

Shellfish...

New "dry" process creates artificial membranes on silicon

September 9, 2014 2:42 pm | News | Comments

Artificial membranes mimicking those found in...

View Sample

FREE Email Newsletter

Platelet-like particles augment natural blood clotting for treating trauma

September 8, 2014 8:23 am | by John Toon, Georgia Institute of Technology | News | Comments

A new class of synthetic platelet-like particles could augment natural blood clotting for the emergency treatment of traumatic injuries. The clotting particles, which are based on soft and deformable hydrogel materials, are triggered by the same factor that initiates the body’s own clotting processes.

The beetle’s white album

August 15, 2014 9:31 am | News | Comments

The physical properties of the ultra-white scales on certain species of beetle could be used to make whiter paper, plastics and paints, while using far less material than is used in current manufacturing methods. Current technology is not able to produce a coating as white as these beetles can in such a thin layer, and spectroscopic analyses are revealing how this colorization is achieved through a dense complex network of chitin.

World’s smallest propeller could be used for microscopic medicine

July 30, 2014 9:29 am | by Kevin Hattori, American Technion Society | News | Comments

An Israeli and German research team have succeeded in creating a tiny screw-shaped propeller that can move in a gel-like fluid, mimicking the environment inside a living organism. The filament that makes up the propeller, made of silica and nickel, is only 70 nm in diameter. The entire propeller is just 400 nm long.

Advertisement

Antioxidant biomaterial promotes healing

July 25, 2014 6:55 am | News | Comments

When a foreign material like a medical device or surgical implant is put inside the human body, the body usually reacts negatively. For the first time ever, researchers at Northwestern Univ. have created a biodegradable biomaterial that is inherently antioxidant. The material can be used to create elastomers, liquids that turn into gels, or solids for building devices that are more compatible with cells and tissues.

Ultrasonically propelled nanorods spin dizzyingly fast

July 22, 2014 8:32 am | News | Comments

Vibrate a solution of rod-shaped metal nanoparticles in water with ultrasound and they'll spin around their long axes like tiny drill bits. Why? No one yet knows exactly. But researchers at the NIST have clocked their speed, and it's fast. At up to 150,000 revolutions per minute, these nanomotors rotate 10 times faster than any nanoscale object submerged in liquid ever reported.

Mats made from shrimp chitin attract uranium like a magnet

July 18, 2014 11:16 am | News | Comments

A Univ. of Alabama start-up company, 525 Solutions, has received about $1.5 million from the federal government to refine an invention to extract uranium from the ocean for use as fuel. It is an adsorbent, biodegradable material made from the compound chitin, which is found in crustaceans and insects. The researchers have developed transparent sheets, or mats, comprised of tiny chitin fibers, which pull uranium from the water.

Study: Squid skin protein could improve biomedical technologies

July 16, 2014 2:24 pm | News | Comments

The common pencil squid may hold the key to a new generation of medical technologies that could communicate more directly with the human body. Materials science researchers in California have discovered that reflectin, a protein in the tentacled creature’s skin, can conduct positive electrical charges, or protons, making it a promising material for building biologically inspired devices.  

Researchers develop smart gating nanochannels for confined water

June 25, 2014 11:14 am | News | Comments

Confined water exists widely and plays important roles in natural environments, particularly inside biological nanochannels. After several years of work, scientists in China have developed a series of biomimetic nanochannels that can serve as the base for confined transportation of water. The technology suggests a potential use in energy conversion systems.

Advertisement

Delivering drugs on cue

June 24, 2014 7:43 am | News | Comments

Current drug delivery systems used to administer chemotherapy to cancer patients typically release a constant dose of the drug over time, but a new study challenges this "slow and steady" approach and offers a novel way to locally deliver the drugs "on demand," as reported in the Proceedings of the National Academy of Sciences.

Better tissue healing with disappearing hydrogels

June 9, 2014 8:06 am | by Peter Iglinski, Univ. of Rochester | News | Comments

When stem cells are used to regenerate bone tissue, many wind up migrating away from the repair site, which disrupts the healing process. But a technique employed by a Univ. of Rochester research team keeps the stem cells in place, resulting in faster and better tissue regeneration. The keyis encasing the stem cells in polymers that attract water and disappear when their work is done.

Joint implants without an expiration date

June 2, 2014 9:02 am | News | Comments

Artificial joints have a limited lifespan. After a few years, many hip and knee joints have to be replaced. More problematic are intervertebral disc implants, which cannot easily be replaced after they “expire” and are usually reinforced, which restrict a patient’s movement. Researchers in Switzlernad have now succeeded in coating mobile intervertebral disc implants so that they show no wear and will now last for a lifetime.

Engineering a better way to rebuild bone inside the body

May 30, 2014 8:05 am | by Brett Israel, Georgia Institute of Technology | News | Comments

Traumatic bone injuries are often so severe that the body can’t effectively repair the damage on its own. To aid the recovery, clinicians inject patients with growth factors. The treatment is costly, requiring large amounts of expensive growth factors. The growth factors also disperse, creating unwanted bone formation around the injury. A new technology could provide more efficient delivery of the bone regenerating growth factors.

Study finds crowding has big effects on biomolecules

May 22, 2014 1:58 pm | News | Comments

Crowding has notoriously negative effects at large size scales, blamed for everything from human disease and depression to community resource shortages. But relatively little is known about the influence of crowding at the cellular level. A new JILA study shows that a crowded environment has dramatic effects on individual biomolecules.

Advertisement

Using nature as a model for low-friction bearings

May 14, 2014 9:30 am | News | Comments

The mechanical properties of natural joints are considered unrivalled. Cartilage is coated with a special polymer layer allowing joints to move virtually friction-free, even under high pressure. Using simulations, scientists in Europe have developed a new process that technologically imitates biological lubrication and even improves it using two different types of polymers.

A hydrogel that knows when to go

May 7, 2014 7:34 am | Videos | Comments

Rice Univ. bioengineers have created a hydrogel that instantly turns from liquid to semisolid at close to body temperature—and then degrades at precisely the right pace. The gel shows potential as a bioscaffold to support the regrowth of bone and other 3-D tissues in a patient’s body using the patient’s own cells to seed the process.

Cyborg sensor could unlock anesthesia’s secrets

May 6, 2014 11:19 am | by Evan Lerner, Univ. of Pennsylvania | News | Comments

Researchers in Pennsylvania have created an artificial chemical sensor based on one of the human body’s most important receptors, one that is critical in the action of painkillers and anesthetics. In these devices, the receptors’ activation produces an electrical response rather than a biochemical one, allowing that response to be read out by a computer.

Engineers grow functional human cartilage in lab

April 30, 2014 2:50 pm | by Holly Evarts, Columbia Engineering | News | Comments

Researchers in New York have been able to, for the first time, generate fully functional human cartilage from mesenchymal stem cells by mimicking, in vitro, the developmental process of mesenchymal condensation. While there has been great success in engineering pieces of cartilage using young animal cells, no one has, until now, been able to reproduce these results using adult human stem cells from bone marrow or fat.

Promising agents burst through superbug defenses to fight antibiotic resistance

April 10, 2014 9:02 am | News | Comments

In the fight against “superbugs,” scientists have discovered a class of agents that can make some of the most notorious strains vulnerable to the same antibiotics that they once handily shrugged off. Recently discovered metallopolymers, when paired with the same antibiotics MRSA normally dispatches with ease, helped evade the bacteria’s defensive enzymes and destroyed its protective walls, causing the bacteria to burst.

Synthetic collagen promotes natural clotting

April 10, 2014 8:04 am | News | Comments

Synthetic collagen invented at Rice Univ. may help wounds heal by directing the natural clotting of blood. The material, KOD, mimics natural collagen, a fibrous protein that binds cells together into organs and tissues. It could improve upon commercial sponges or therapies based on naturally derived porcine or bovine-derived collagen now used to aid healing during or after surgery.

An ultrathin collagen matrix biomaterial tool for 3-D microtissue engineering

April 3, 2014 9:53 am | by World Scientific | News | Comments

A novel ultrathin collagen matrix assembly allows for the unprecedented maintenance of liver cell morphology and function in a microscale "organ-on-a-chip" device that is one example of 3-D microtissue engineering.          

Lab-grown muscle heals itself after animal implantation

April 2, 2014 12:07 pm | News | Comments

Biomedical engineers have grown living skeletal muscle that looks a lot like the real thing. It contracts powerfully and rapidly, integrates into mice quickly, and for the first time, demonstrates the ability to heal itself both inside the laboratory and inside an animal.

Researchers uncover secrets of a mollusk’s bioceramic armor

March 31, 2014 7:43 am | by David L. Chandler, MIT News Office | News | Comments

The shells of a sea creature, the mollusk Placuna placenta, are not only exceptionally tough, but also clear enough to read through. Now, researchers at Massachusetts Institute of Technology have analyzed these shells to determine exactly why they are so resistant to penetration and damage; even though they are 99% calcite, a weak, brittle mineral.

World’s first light-activated antimicrobial surface also works in the dark

March 24, 2014 3:46 pm | News | Comments

Researchers in the U.K. have developed a new antibacterial material which has potential for cutting hospital acquired infections. The combination of two simple dyes with nanoscopic particles of gold is deadly to bacteria when activated by light, even under modest indoor lighting. And in a first for this type of substance, it also shows impressive antibacterial properties in total darkness.

Bionic plants

March 17, 2014 7:36 am | by Anne Trafton, MIT News Office | News | Comments

Plants have many valuable functions: They provide food and fuel, release the oxygen that we breathe and add beauty to our surroundings. Now, a team of Massachusetts Institute of Technology researchers wants to make plants even more useful by augmenting them with nanomaterials that could enhance their energy production and give them completely new functions, such as monitoring environmental pollutants.

Scientists “herd” cells in new approach to tissue engineering

March 12, 2014 8:08 am | by Sarah Yang, Media Relations, UC Berkeley | Videos | Comments

Sometimes it only takes a quick jolt of electricity to get a swarm of cells moving in the right direction. Researchers at the Univ. of California, Berkeley found that an electrical current can be used to orchestrate the flow of a group of cells, an achievement that could establish the basis for more controlled forms of tissue engineering.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading