Advertisement
Biomaterials
Subscribe to Biomaterials

The Lead

Soy: It’s good for eating, baking and cleaning up crude oil spills

April 23, 2015 9:11 am | by American Chemical Society | News | Comments

If you've studied ingredient labels on food packaging, you've probably noticed that soy lecithin is in a lot of products, ranging from buttery spreads to chocolate cake. Scientists have now found a potential new role for this all-purpose substance: dispersing crude oil spills. Their study, which could lead to a less toxic way to clean up these environmental messes, appears in ACS Sustainable Chemistry & Engineering.

Researchers create bio-inspired flame retardants

April 15, 2015 9:53 am | by NIST | News | Comments

After devising several new and promising "green" flame retardants for furniture padding, NIST...

Self-assembling, bioinstructive collagen materials for research, medical applications

April 9, 2015 7:50 am | by Emil Venere, Purdue Univ. | News | Comments

A Purdue Univ. researcher and entrepreneur is commercializing her laboratory's innovative...

Artificial hand responds to sensitively thanks to muscles made from smart metal wires

March 24, 2015 3:52 pm | by Saarland University | News | Comments

Engineers have taken a leaf out of nature's book by equipping an artificial hand with muscles...

View Sample

FREE Email Newsletter

A mollusk of a different stripe

February 26, 2015 10:59 am | by Jennifer Chu, MIT News Office | Videos | Comments

The blue-rayed limpet is a tiny mollusk that lives in kelp beds along the coasts of Norway, Iceland, the U.K., Portugal and the Canary Islands. These diminutive organisms might escape notice entirely, if not for a very conspicuous feature: bright blue dotted lines that run in parallel along the length of their translucent shells. Depending on the angle at which light hits, a limpet’s shell can flash brilliantly even in murky water.

Making a better wound dressing

February 13, 2015 10:18 am | by American Chemical Society | News | Comments

With a low price tag and mild flavor, tilapia has become a staple dinnertime fish for many Americans. Now it could have another use: helping to heal our wounds. In ACS Applied Materials & Interfaces, scientists have shown that a protein found in this fish can promote skin repair in rats without an immune reaction, suggesting possible future use for human patients.

Beavers Inspire Method to Aid Tooth Enamel

February 13, 2015 7:00 am | by Northwestern Univ. | News | Comments

Beavers don't brush their teeth, and they don't drink fluoridated water, but a new study reports beavers do have protection against tooth decay built into the chemical structure of their teeth: iron. This pigmented enamel, the researchers found, is both harder and more resistant to acid than regular enamel, including that treated with fluoride.

Advertisement

Bioengineered miniature structures could prevent heart failure

February 4, 2015 4:10 pm | by Medical College of Wisconsin | News | Comments

The delivery of tiny biodegradable microstructures to heart tissue damaged by heart attack may help repair the tissue and prevent future heart failure. A team led by cardiovascular researchers at the Medical College of Wisconsin bioengineered the microstructures to be the same size, shape and stiffness as adult heart muscle cells, or cardiomyocytes, with the goal of releasing biologically active peptides that act as cardioprotective agents.

Researchers design tailored tissue adhesives

January 29, 2015 8:17 am | by Anne Trafton, MIT News Office | News | Comments

After undergoing surgery to remove diseased sections of the colon, up to 30% of patients experience leakage from their sutures, which can cause life-threatening complications. Many efforts are under way to create new tissue glues that can help seal surgical incisions and prevent such complications; now, a new study reveals that the effectiveness of such glues hinges on the state of the tissue in which they are being used.

DNA “glue” could be used to build tissues, organs

January 14, 2015 10:23 am | by American Chemical Society | News | Comments

DNA molecules provide the "source code" for life in humans, plants, animals and some microbes. But now researchers report an initial study showing that the strands can also act as a glue to hold together 3-D-printed materials that could someday be used to grow tissues and organs in the laboratory.

A potential long-lasting treatment for sensitive teeth

January 8, 2015 9:22 am | by American Chemical Society | News | Comments

Rather than soothe and comfort, a hot cup of tea or cocoa can cause people with sensitive teeth a jolt of pain. But scientists are now developing a new biomaterial that can potentially rebuild worn enamel and reduce tooth sensitivity for an extended period. They describe the material, which they tested on dogs, in ACS Nano.

Honeybee hive sealant promotes hair growth in mice

January 7, 2015 2:58 pm | by American Chemical Society | News | Comments

Hair loss can be devastating for the millions of men and women who experience it. Now scientists are reporting that a substance from honeybee hives might contain clues for developing a potential new therapy. They found that the material, called propolis, encouraged hair growth in mice. The study appears in the Journal of Agricultural and Food Chemistry.

Advertisement

Responsive material could be the “golden ticket” of sensing

January 7, 2015 7:45 am | by Univ. of Cambridge | News | Comments

Researchers from the Univ. of Cambridge have developed a new self-assembled material, which, by changing its shape, can amplify small variations in temperature and concentration of biomolecules, making them easier to detect. The material, which consists of synthetic spheres “glued” together with short strands of DNA, could be used to underpin a new class of biosensors, or form the basis for new drug delivery systems.

Bio-inspired bleeding control

November 13, 2014 4:12 pm | by Sonia Fernandez, Univ. of California, Santa Barbara | News | Comments

Stanching the free flow of blood from an injury remains a holy grail of clinical medicine. Controlling blood flow is a primary concern and first line of defense for patients and medical staff in many situations, from traumatic injury to illness to surgery. If control is not established within the first few minutes of a hemorrhage, further treatment and healing are impossible.

'Direct writing' of diamond patterns from graphite a potential technological leap

November 6, 2014 10:00 am | by Emil Venere, Purdue Univ. | News | Comments

What began as research into a method to strengthen metals has led to the discovery of a new technique that uses a pulsing laser to create synthetic nanodiamond films and patterns from graphite, with potential applications from biosensors to computer chips.

Making lab-grown tissues stronger

October 31, 2014 8:54 am | by Andy Fell, UC Davis News Service | News | Comments

Lab-grown tissues could one day provide new treatments for injuries and damage to the joints, including articular cartilage, tendons and ligaments. Cartilage, for example, is a hard material that caps the ends of bones and allows joints to work smoothly. Univ. of California, Davis biomedical engineers, exploring ways to toughen up engineered cartilage and keep natural tissues strong outside the body, report new developments.

“Sticky” ends start synthetic collagen growth

October 28, 2014 8:12 am | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. researchers have delivered a scientific one-two punch with a pair of papers that detail how synthetic collagen fibers self-assemble via their sticky ends. Collagen is the most common protein in mammals, a major component of bone and the fibrous tissues that support cells and hold organs together. Discovering its secrets may lead to better synthetic collagen for tissue engineering and cosmetic and reconstructive medicine.

Advertisement

Emergent behavior lets bubbles “sense” environment

October 27, 2014 12:46 pm | Videos | Comments

Tiny, soapy bubbles can reorganize their membranes to let material flow in and out in response to the surrounding environment, according to new research. This behavior could be exploited in creating microbubbles that deliver drugs or other payloads inside the body, and could help us understand how the very first living cells on Earth might have survived billions of years ago.

Breaking the nano barrier

October 24, 2014 8:00 am | by New York Univ. | News | Comments

Researchers at the New York Univ. Polytechnic School of Engineering have broken new ground in the development of proteins that form specialized fibers used in medicine and nanotechnology. For as long as scientists have been able to create new proteins that are capable of self-assembling into fibers, their work has taken place on the nanoscale. For the first time, this achievement has been realized on the microscale.

Platelets modulate clotting behavior by “feeling” their surroundings

September 25, 2014 8:31 am | by John Toon, Georgia Institute of Technology | News | Comments

Platelets, the tiny cell fragments whose job it is to stop bleeding, are very simple. They don’t have a cell nucleus. But they can “feel” the physical environment around them, researchers at Emory Univ. and Georgia Tech have discovered. Platelets respond to surfaces with greater stiffness by increasing their stickiness, the degree to which they “turn on” other platelets and other components of the clotting system, the researchers found.

Engineered proteins stick like glue, even in water

September 22, 2014 1:46 pm | by Anne Trafton, MIT | News | Comments

Shellfish such as mussels and barnacles secrete very sticky proteins that help them cling to rocks or ship hulls, even underwater. Inspired by these natural adhesives, a team of Massachusetts Institute of Technology engineers has designed new materials that could be used to repair ships or help heal wounds and surgical incisions.

“Electronic skin” could improve early breast cancer detection

September 10, 2014 1:09 pm | News | Comments

For detecting cancer, manual breast exams seem low-tech compared to other methods such as MRI. But scientists are now developing an “electronic skin” that “feels” and images small lumps that fingers can miss. Knowing the size and shape of a lump could allow for earlier identification of breast cancer, which could save lives.

New "dry" process creates artificial membranes on silicon

September 9, 2014 2:42 pm | News | Comments

Artificial membranes mimicking those found in living organisms have many potential applications ranging from detecting bacterial contaminants in food to toxic pollution in the environment to dangerous diseases in people. Now a group of scientists in Chile has developed a way to create these delicate, ultra-thin constructs through a "dry" process, by evaporating two commercial, off-the-shelf chemicals onto silicon surfaces.

Platelet-like particles augment natural blood clotting for treating trauma

September 8, 2014 8:23 am | by John Toon, Georgia Institute of Technology | News | Comments

A new class of synthetic platelet-like particles could augment natural blood clotting for the emergency treatment of traumatic injuries. The clotting particles, which are based on soft and deformable hydrogel materials, are triggered by the same factor that initiates the body’s own clotting processes.

The beetle’s white album

August 15, 2014 9:31 am | News | Comments

The physical properties of the ultra-white scales on certain species of beetle could be used to make whiter paper, plastics and paints, while using far less material than is used in current manufacturing methods. Current technology is not able to produce a coating as white as these beetles can in such a thin layer, and spectroscopic analyses are revealing how this colorization is achieved through a dense complex network of chitin.

World’s smallest propeller could be used for microscopic medicine

July 30, 2014 9:29 am | by Kevin Hattori, American Technion Society | News | Comments

An Israeli and German research team have succeeded in creating a tiny screw-shaped propeller that can move in a gel-like fluid, mimicking the environment inside a living organism. The filament that makes up the propeller, made of silica and nickel, is only 70 nm in diameter. The entire propeller is just 400 nm long.

Antioxidant biomaterial promotes healing

July 25, 2014 6:55 am | News | Comments

When a foreign material like a medical device or surgical implant is put inside the human body, the body usually reacts negatively. For the first time ever, researchers at Northwestern Univ. have created a biodegradable biomaterial that is inherently antioxidant. The material can be used to create elastomers, liquids that turn into gels, or solids for building devices that are more compatible with cells and tissues.

Ultrasonically propelled nanorods spin dizzyingly fast

July 22, 2014 8:32 am | News | Comments

Vibrate a solution of rod-shaped metal nanoparticles in water with ultrasound and they'll spin around their long axes like tiny drill bits. Why? No one yet knows exactly. But researchers at the NIST have clocked their speed, and it's fast. At up to 150,000 revolutions per minute, these nanomotors rotate 10 times faster than any nanoscale object submerged in liquid ever reported.

Mats made from shrimp chitin attract uranium like a magnet

July 18, 2014 11:16 am | News | Comments

A Univ. of Alabama start-up company, 525 Solutions, has received about $1.5 million from the federal government to refine an invention to extract uranium from the ocean for use as fuel. It is an adsorbent, biodegradable material made from the compound chitin, which is found in crustaceans and insects. The researchers have developed transparent sheets, or mats, comprised of tiny chitin fibers, which pull uranium from the water.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading