Advertisement
Biomaterials
Subscribe to Biomaterials
View Sample

FREE Email Newsletter

Football-shaped particles bolster body’s defense against cancer

October 14, 2013 7:58 am | News | Comments

Researchers at Johns Hopkins Univ. have succeeded in making flattened, football-shaped artificial particles that impersonate immune cells. These football-shaped particles seem to be better than the typical basketball-shaped particles at teaching immune cells to recognize and destroy cancer cells in mice.

Creating a permanent bacteria barrier

October 11, 2013 9:35 am | by Rob Matheson, MIT News Office | News | Comments

Any medical device implanted in the body attracts bacteria to its surface, causing infections and thrombosis that lead to many deaths annually. Devices can be coated with antibiotics and blood thinners, but these eventually dissolve, limiting their longevity and effectiveness. Now, Semprus BioSciences is developing a novel biomaterial for implanted medical devices that barricades these troublesome microbes from the device’s surface.

Spider’s super-thin ribbons key to silk tech

October 10, 2013 8:57 am | News | Comments

The silk of a spider feared for its venomous bite could be the key to creating new super-sticky films and wafer-thin electronics and sensors for medical implants that are highly compatible with the human body. A team of scientists studied the brown recluse spider (Loxosceles recluse), which produces super-thin ribbons of silk as opposed to the round fibers typically spun by spiders. 

Advertisement

X-ray science taps bug biology to design better materials, reduce pollution

September 18, 2013 8:01 am | News | Comments

Bug spray, citronella candles, mosquito netting—most people will do anything they can to stay away from insects during the warmer months. But those creepy crawlers we try so hard to avoid may offer substantial solutions to some of life’s problems. Researchers using x-ray technology at the Advanced Photon Source were able to take an inside look at several insects, gathering results that go beyond learning about insect physiology and biology.

Researchers fabricate camouflage coating from squid protein

September 10, 2013 8:18 am | News | Comments

What can the U.S. military learn from a common squid? A lot about how to hide from enemies, according to researchers at Univ. of California, Irvine. As detailed in a study published online in Advanced Materials, they have created a biomimetic infrared camouflage coating inspired by Loliginidae, also known as pencil squids or your everyday calamari.

Genome of elastomeric materials creates novel materials

September 10, 2013 7:54 am | News | Comments

A wide range of biologically inspired materials may now be possible by combining protein studies, materials science and RNA sequencing, according to an international team of researchers. The researchers looked at proteins because they are the building blocks of biological materials and also often control sequencing, growth and self-assembly. RNA produced from the DNA in the cells is the template for biological proteins.

Material in dissolvable sutures could treat brain infections

August 29, 2013 2:59 pm | News | Comments

A plastic material already used in absorbable surgical sutures and other medical devices shows promise for continuous administration of antibiotics to patients with brain infections, scientists are reporting in a new study. Use of the material, placed directly on the brain’s surface, could reduce the need for weeks of costly hospital stays now required for such treatment.

New “nanobiocomposite” material made from nanotubes and butterfly wings

August 28, 2013 2:28 pm | News | Comments

Leveraging the amazing natural properties of the Morpho butterfly's wings, scientists have developed a hybrid material that shows promise for wearable electronic devices, highly sensitive light sensors and sustainable batteries. A honeycomb network of carbon nanotubes has actually been grown on Morpho butterfly wings, creating a composite material that can be activated with a laser.

Advertisement

A durable, bacteria-killing surface for hospitals

August 20, 2013 12:13 pm | News | Comments

Scientists at Switzerland have developed a new method for making antimicrobial surfaces that can eliminate bacteria under a minute. The breakthrough relies on a new sputtering technique that uses a highly ionized plasma to, for the first time, deposit antibacterial titanium oxide and copper films on 3-D polyester surfaces. This promotes the production of free radicals, which are powerful natural bactericides.

An organized approach to 3-D tissue engineering

August 20, 2013 7:43 am | News | Comments

Tissues designed with pre-formed vascular networks are known to promote rapid vascular integration with the host. Generally, prevascularization has been achieved by seeding or encapsulating endothelial cells, but these methods are slow. Hydrogels have also been tried, but a new technique developed in Singapore uses hydrogels with a new patterning process to quickly incorporate different cell types separately into different fibers.

Scientist measure and control the temperature inside living cells

August 5, 2013 6:26 pm | News | Comments

Using imperfections in diamonds as nanoscale thermometers, and gold nanoparticles implanted in cells as laser-induced heating mechanisms, a team of researchers working on DARPA’s Quantum-Assisted Sensing and Readout program recently demonstrated sub-degree temperature measurement and control at the nanometer scale inside living cells.

New coating turns ordinary glass into superglass

August 5, 2013 8:08 am | News | Comments

A new transparent, bio-inspired coating makes ordinary glass tough, self-cleaning and incredibly slippery, a team from the Wyss Institute for Biologically Inspired Engineering at Harvard Univ. reported. The new coating could be used to create durable, scratch-resistant lenses for eyeglasses, self-cleaning windows, improved solar panels and new medical diagnostic devices.

Light that moves and molds gels

August 1, 2013 4:08 pm | News | Comments

Some animals, like the octopus and cuttlefish, transform their shape based on environment. For decades, researchers have worked toward mimicking similar biological responses in non-living organisms, as it would have significant implications in the medical arena. Now, researchers at the Univ. of Pittsburgh have demonstrated such a biomimetic response using hydrogels.

Advertisement

Insect-inspired super rubber moves toward practical uses in medicine

July 31, 2013 10:52 am | News | Comments

A recent publication evaluates the latest advances toward using a protein called resilin in nanosprings, biorubbers, biosensors and other applications. This remarkable protein is rubber-like and enables dragonflies, grasshoppers and other insects to flap their wings, jump and chirp. Resilin could have major potential uses in medicine.

Just hanging on: Why mussels are so good at it

July 23, 2013 12:37 pm | by David L. Chandler, MIT News Office | News | Comments

Unlike barnacles, which cement themselves tightly to surfaces, mussels dangle more loosely from these surfaces, attached by a collection of fine filaments known as byssus threads. This approach lets the creatures drift further out into the water, where they can absorb nutrients. Despite the fragile appearance of these threads, they can withstand impact forces that are nine times greater than forces exerted by stretching in one direction.

Injectable “smart sponge” hold promise for controlled drug delivery

July 17, 2013 10:18 am | News | Comments

Researchers have developed a drug delivery technique for diabetes treatment in which a sponge-like material surrounds an insulin core. The sponge expands and contracts in response to blood sugar levels to release insulin as needed. The technique could also be used for targeted drug delivery to cancer cells.

Scientists create first shape-memory plastics able to reverse deformation

July 17, 2013 8:27 am | News | Comments

Until now, polymers with temperature-controlled shape memory could only change form once. Biomaterial researchers have recently developed plastics that can repeatedly change from one shape to another and then back again when temperatures fluctuate within a selected range. The material is dubbed “polymer actuators” by its creators in Germany.

Steering stem cells with magnets

July 16, 2013 2:43 pm | News | Comments

By feeding stem cells tiny particles made of magnetized iron oxide, scientists at Emory Univ. and Georgia Tech have used magnets to attract the cells to a particular location in the body after intravenous injection. The method could become a tool for directing stem cells’ healing powers to treat conditions such as heart disease or vascular disease.

Princeton researchers create "bionic ear"

July 8, 2013 7:17 am | News | Comments

With a 3-D printer, a petri dish and some cells from a cow, Princeton Univ. researchers are growing synthetic ears that can receive—and transmit—sound. The 3-D ear is not designed to replace a human one, though; the research is meant to explore a new method of combining electronics with biological material.

Underwater propulsion supplied with the help of a 3-D printer

July 1, 2013 12:15 pm | News | Comments

Using the octopus as inspiration, researchers in Germany have built a silent propulsion system for boats and water sport devices. The actuator works by sucking water into an elastomer ball, which is then contracted by a hydraulic piston. The most compelling feature is that the designers can produce the system in a single step with a 3-D printer.

Silver could promote colonization of bacteria on medical devices

July 1, 2013 7:59 am | News | Comments

Biomaterials are susceptible to microbial colonization, which is why silver is often added to reduce the adhesion rate of bacteria. However, a recent study by researchers in Portugal suggests that—in one material—increasing levels of silver may indirectly promote bacterial adhesion instead of decrease it.

Printing artificial bone

June 17, 2013 10:23 am | by Denise Brehm, Civil and Environmental Engineering | News | Comments

Researchers working to design new materials that are durable, lightweight and environmentally sustainable are increasingly looking to bone for inspiration. While researchers have come up with hierarchical structures in the design of new materials, going from a computer model to the production of physical artifacts has been a persistent challenge. Now researchers have developed an approach that allows them to turn their designs into reality.

Surgeons implant bioengineered vein

June 6, 2013 2:19 pm | News | Comments

In a first-of-its-kind operation in the United States, a team of doctors at Duke University Hospital helped create a bioengineered blood vessel and transplanted it into the arm of a patient with end-stage kidney disease. The procedure was the first U.S. clinical trial to test the safety and effectiveness of the bioengineered blood vein.

Human scabs serve as inspiration for new bandage

May 29, 2013 10:34 am | News | Comments

Human scabs have become the model for development of an advanced wound dressing material that shows promise for speeding the healing process, scientists are reporting. The team explains that scabs are a perfect natural dressing material for wounds. In addition to preventing further bleeding, scabs protect against infection and recruit the new cells needed for healing.

Engineered biomaterial could improve success of medical implants

May 14, 2013 12:24 pm | News | Comments

It’s a familiar scenario—a patient receives a medical implant and days later, the body attacks the artificial valve or device, causing complications to an already compromised system. Expensive medical devices and surgeries often are thwarted by the body’s natural response to attack something in the tissue that appears foreign. Now, University of Washington engineers have demonstrated in mice a way to prevent this sort of response.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading