Advertisement
Biomaterials
Subscribe to Biomaterials
View Sample

FREE Email Newsletter

Material loss protects teeth against fatigue failure

May 1, 2013 9:07 am | News | Comments

Computer simulations conducted in Germany have shown that the reduction of natural dental wear might be the main cause for widely spread non-carius cervical lesions—the loss of enamel and dentine at the base of the crown—in our teeth. The discovery was made by examining the biomechanical behavior of teeth using finite element analysis methods typically applied to engineering problems.

Antibacterial hydrogel offers protection from stubborn infections

April 24, 2013 5:00 pm | News | Comments

Coating medical supplies with an antimicrobial material is one approach that bioengineers are using to combat the increasing spread of multidrug-resistant bacteria. A research team in Singapore has now developed a highly effective antimicrobial coating based on cationic polymers. The coating can be applied to medical equipment, such as catheters.

GUMBOS technology promises new drugs, electronic devices

April 10, 2013 1:06 pm | News | Comments

Mention a breakthrough involving "gumbo" technology in this city, and people think of a new twist on The Local Dish, the stew that's the quintessence of southern Louisiana cooking. But scientific presentations at a meeting of the world's largest scientific society this week are focusing on what may be an advance in developing GUMBOS-based materials with far-reaching medical, electronic and other uses.

Advertisement

Scientists develop biomaterial that mimics squid beak

April 3, 2013 11:05 am | News | Comments

Researchers led by scientists at Case Western Reserve University have turned to an unlikely model to make medical devices safer and more comfortable—a squid's beak. Many medical implants require hard materials that have to connect to or pass through soft body tissue. This mechanical mismatch leads to problems such as skin breakdown at abdominal feeding tubes in stroke patients and where wires pass through the chest to power assistive heart pumps. Enter the squid.

Scientists create flexible mineral inspired by deep-sea sponges

March 15, 2013 11:10 am | News | Comments

Imitating the structural elements found in most sea sponges, researchers in Germany have created a new synthetic hybrid material that is extremely flexible yet has a mineral content of almost 90%. They recreated the sponge’s spicules using natural calcium carbonate and integrated a protein of the sponge. The invention is even more flexible than its natural counterpart.

New gel material releases drug under patient’s pressure

March 14, 2013 10:39 am | News | Comments

A research team at the National Institute of Materials Science in Japan has recently developed a gel material which is capable of releasing drugs in response to pressure applied by the patient. Three fingers applying force to the site of the gel produces an effect for up to three days. They built the new drug from two materials already used in pharmaceuticals: a saccharide and a natural component of algae.

Scientists use DNA to create nano-encrypted Morse code

March 12, 2013 3:17 pm | News | Comments

Researchers at the University of Illinois at Urbana-Champaign have devised a dynamic and reversible way to assemble nanoscale structures and have used it to encrypt a Morse code message. The team started with a template of DNA origami―multiple strands of DNA woven into a tile. They “wrote” their message in the DNA template by attaching biotin-bound DNA strands to specific locations on the tiles that would light up as dots or dashes. 

Nanodiamonds being perfected for use in biomedical applications

March 4, 2013 8:29 am | News | Comments

Scientists in Australia are perfecting a technique that may help see nanodiamonds used in biomedical applications. They have been processing the raw diamonds so that they might be used as a tag for biological molecules and as a probe for single-molecule interactions. With the help of an international team, these diamonds have recently been optically trapped and manipulated in three dimensions—the first time this has been achieved.

Advertisement

Nanogels offer new way to attack lupus

March 1, 2013 3:22 pm | by Eric Gershon, Yale University | News | Comments

In systemic lupus erythematosus, the body attacks itself for largely mysterious reasons, leading to serious tissue inflammation and organ damage. Current drug treatments address symptoms only and can require life-long daily use at toxic doses. Now, scientists at Yale University have designed and tested a drug delivery system that uses biodegradable nanoparticles to deliver low drug doses. The method shows early promise for improved treatment of lupus and other chronic, uncured autoimmune diseases.

How do bacteria clog medical devices? Very quickly.

March 1, 2013 2:46 pm | News | Comments

A new study has exam­ined how bac­te­ria clog med­ical devices, and the result isn’t pretty. The microbes join to cre­ate slimey rib­bons that tan­gle and trap other pass­ing bac­te­ria, cre­at­ing a full block­age in a star­tlingly short period of time. The find­ing could help shape strate­gies for pre­vent­ing clog­ging of devices such as stents and water fil­ters

Team develops trackable drug-filled nanoparticles

March 1, 2013 8:35 am | News | Comments

Many researchers have been investigating the potential of tiny particles filled with drugs to treat cancer. A team of scientists in Sweden have recently made an advance in this area of research by developing “theranostic” nanoparticles, which combine therapy and diagnostics in the same nanomaterial. They are trackable through magnetic resonance.

Scientists engineer bacterial live wires

February 28, 2013 1:09 pm | News | Comments

Just like electronics, living cells use electrons for energy and information transfer. But cell membranes have thus far prevented us from “plugging” in cells to our computers. To get around this barrier that tightly controls charge balance, a research group at Lawrence Berkeley National Laboratory’s Molecular Foundry has engineered <em>E. coli</em> as a testbed for cellular-electrode communication. They have now demonstrated that these bacterial strains can generate measurable current at an anode.

Adhesion system of fish studied to create bio-inspired adhesive

February 21, 2013 8:18 am | News | Comments

A new study provides details of the structure and tissue properties of the remora fish's unique adhesion system. The researchers plan to use this information to create an engineered reversible adhesive inspired by the remora that could be used to create pain- and residue-free bandages, attach sensors to objects in aquatic or military reconnaissance environments, replace surgical clamps, and help robots climb.

Advertisement

Researchers coat spinal polymer implants with bioactive film

February 19, 2013 9:29 am | News | Comments

Researchers from North Carolina State University have, for the first time, successfully coated polymer implants with a bioactive film. The discovery should improve the success rate of such implants. The polymer used in these implants, called PEEK, does not bond well with bone or other tissues in the body. This can result in the implant rubbing against surrounding tissues, which can lead to medical complications and the need for additional surgeries.

Study: Popular drug-carrying nanoparticles get trapped in bloodstream

February 6, 2013 12:05 pm | News | Comments

Many medically minded researchers are in hot pursuit of designs that will allow drug-carrying nanoparticles to navigate tissues and the interiors of cells, but University of Michigan engineers have discovered that these particles have another hurdle to overcome: escaping the bloodstream. According to their work, the immune system can't get rid of some of the promising drug carriers quickly.

Pathway found for membrane building blocks

January 30, 2013 8:55 am | News | Comments

Biomembranes consist of a mosaic of individual, densely packed lipid molecules. These molecules are formed inside the cells. But how do these building blocks move to the correct part of the membrane? Researchers in Germany have discovered the bilayer structural mechanism that demonstrates how this is done.

Bioinspired fibers change color when stretched

January 28, 2013 4:31 pm | News | Comments

A team of materials scientists at Harvard University and the University of Exeter have invented a new fiber that changes color when stretched. Inspired by nature, the researchers identified and replicated the unique structural elements that create the bright iridescent blue color of a tropical plant's fruit.

Magnetic nanovehicles control, target drug release in the body

January 28, 2013 10:57 am | News | Comments

Researchers in Switzerland have designed tiny vessels that are capable of releasing active agents in the body. These “nanovehicles” are made from a liposome just 100 to 200 nm in diameter. By attaching magnetic iron oxide nanoparticles to the surface, scientists are able to target the vessel, heating it up to release the drug.

Scientists unravel the mysteries of spider silk

January 28, 2013 8:22 am | News | Comments

Scientists at Arizona State University are celebrating their recent success on the path to understanding what makes the fiber that spiders spin—weight for weight—at least five times as strong as piano wire. They have found a way to obtain a wide variety of elastic properties of the silk of several intact spiders' webs using a sophisticated but non–invasive laser light scattering technique.

New antimicrobial hydrogels fight superbugs and drug-resistant biofilms

January 24, 2013 8:20 am | News | Comments

Bacterial biofilms, which diseased groupings of cells found in 80% of infections, are a significant health hazard and one of the biggest headaches for hospitals and their constant battle against disease. Researchers from IBM, with the help of scientists in Singapore, revealed today a synthetic antimicrobial hydrogel that can break through diseased biofilms and completely eradicate drug-resistant bacteria upon contact. It is the first hydrogel to be biodegradable, biocompatible, and non-toxic.

Tissue engineers find cartilage repair success with new biomaterial

January 14, 2013 4:18 pm | News | Comments

In a small study recently conducted at Johns Hopkins Medicine, researchers reported increased healthy tissue growth after surgical repair of damaged cartilage if they put a “hydrogel” scaffolding into the wound to support and nourish the healing process. Physicians encourage cartilage growth by punching tiny holes in bone near the injured cartilage. This stimulates the patients’ stem cells to grow.

Mussels inspire innovative new adhesive for surgery

January 9, 2013 6:33 pm | News | Comments

Mussels can be a mouthwatering meal, but the chemistry that lets mussels stick to underwater surfaces may also provide a highly adhesive wound closure and more effective healing from surgery. Researchers have incorporated the chemical structure from the mussel's adhesive protein into the design of an injectable synthetic polymer. The bioadhesives adhere well in wet environments, have controlled degradability, and improved biocompatibility.

Mussel goo inspires blood vessel glue

December 12, 2012 8:08 am | News | Comments

A University of British Columbia researcher has helped create a gel—based on the mussel's knack for clinging to rocks, piers, and boat hulls-that can be painted onto the walls of blood vessels and stay put, forming a protective barrier with potentially life-saving implications.

Carbon nanotubes lower nerve-damaging chloride in cells

December 11, 2012 8:10 am | News | Comments

A nanomaterial engineered by researchers at Duke University can help regulate chloride levels in nerve cells that contribute to chronic pain, epilepsy, and traumatic brain injury. The findings were demonstrated in individual nerve cells as well as in the brains of mice and rats, and may have future applications in intracranial or spinal devices to help treat neural injuries.

Inspiration from a porcupine’s quills

December 10, 2012 5:46 pm | by Anne Trafton, MIT News Office | News | Comments

Anyone unfortunate enough to encounter a porcupine’s quills knows that once they go in, they are extremely difficult to remove. Researchers at Massachusetts Institute of Technology and Brigham and Women’s Hospital now hope to exploit the porcupine quill’s unique properties to develop new types of adhesives, needles and other medical devices.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading