Advertisement
Biomaterials
Subscribe to Biomaterials
View Sample

FREE Email Newsletter

World’s first light-activated antimicrobial surface also works in the dark

March 24, 2014 3:46 pm | News | Comments

Researchers in the U.K. have developed a new antibacterial material which has potential for cutting hospital acquired infections. The combination of two simple dyes with nanoscopic particles of gold is deadly to bacteria when activated by light, even under modest indoor lighting. And in a first for this type of substance, it also shows impressive antibacterial properties in total darkness.

Bionic plants

March 17, 2014 7:36 am | by Anne Trafton, MIT News Office | News | Comments

Plants have many valuable functions: They provide food and fuel, release the oxygen that we breathe and add beauty to our surroundings. Now, a team of Massachusetts Institute of Technology researchers wants to make plants even more useful by augmenting them with nanomaterials that could enhance their energy production and give them completely new functions, such as monitoring environmental pollutants.

Scientists “herd” cells in new approach to tissue engineering

March 12, 2014 8:08 am | by Sarah Yang, Media Relations, UC Berkeley | Videos | Comments

Sometimes it only takes a quick jolt of electricity to get a swarm of cells moving in the right direction. Researchers at the Univ. of California, Berkeley found that an electrical current can be used to orchestrate the flow of a group of cells, an achievement that could establish the basis for more controlled forms of tissue engineering.

Advertisement

Manufacturing a solution to planet-clogging plastics

March 7, 2014 9:06 am | by Kristen Kusek, Wyss Institute for Biologically Inspired Engineering, Harvard Univ. | News | Comments

Researchers at Harvard Univ.'s Wyss Institute have developed a method to carry out large-scale manufacturing of everyday objects using a fully degradable bioplastic isolated from shrimp shells. The objects exhibit many of the same properties as those created with synthetic plastics, but without the environmental threat. It also trumps most bioplastics on the market today in posing absolutely no threat to trees.

Shrinking gel steers tooth tissue formation

March 6, 2014 9:02 am | by Dan Ferber, Wyss Institute for Biologically Inspired Engineering, Harvard Univ. | News | Comments

A bit of pressure from a new shrinking, sponge-like gel is all it takes to turn transplanted unspecialized cells into cells that lay down minerals and begin to form teeth. The bioinspired gel material could one day help repair or replace damaged organs, such as teeth and bone, and possibly other organs as well.

Pumping iron: A hydrogel actuator with mussel tone

March 6, 2014 8:48 am | by Marcia Goodrich, Michigan Technological Univ. | News | Comments

Protein from a small, tasty mollusk inspired Michigan Technological Univ.’s Bruce P. Lee to invent a new type of hydrogel actuator. Hydrogels are soft networks of polymers with high water content, like jello. Because of their soft, gentle texture, they have the potential to interact safely with living tissues and have applications in a number of medical areas, including tissue engineering.

Andor Technology joins Oxford Instruments to drive growth

February 12, 2014 8:57 am | News | Comments

Oxford Instruments, a leading provider of high-technology tools for industry and research has recently acquired Andor. A supplier of high-performance cameras, microscope systems and software for the physical science and life science industries, Andor will continue to focus on growing its existing core markets and will spearhead Oxford Instruments strategic expansion into the nanobiotechnology arena.

Lungs may suffer when certain elements go nano

January 28, 2014 11:40 am | by Linda Fulps, Missouri Science & Technology | News | Comments

More than 2,800 commercially available applications are now based on nanoparticles, but this influx of nanotechnology is not without risks, say researchers at Missouri Univ. of Science and Technology. They have been systematically studying the effects of transition metal oxide nanoparticles on human lung cells and have found that the nanoparticles’ toxicity to the cells increased as they moved right on the periodic table.

Advertisement

Silk coat for diamonds makes sleek new imaging, drug delivery tool

January 27, 2014 2:12 pm | News | Comments

Silk and diamonds aren't just for ties and jewelry anymore. They're ingredients for a new kind of tiny glowing particle that could provide doctors and researchers with a novel technique for biological imaging and drug delivery. Just tens of nanometers across, the new particles are made of diamond, covered in silk and can be injected into living cells.

Seashells inspire new way to preserve bones for archeologists, paleontologists

January 22, 2014 9:04 am | News | Comments

Recreating the story of humanity’s past by studying ancient bones can hit a snag when they deteriorate, but scientists are now reporting an advance inspired by seashells that can better preserve valuable remains. Their findings, which appear in Langmuir, could have wide-ranging implications for both archeology and paleontology.

Researchers develop artificial bone marrow

January 10, 2014 12:51 pm | News | Comments

A new porous structure under development in German possesses essential properties of natural bone marrow and can be used for the reproduction of stem cells in the laboratory. The specific reproduction of these hematopoietic cells outside the body might facilitate new therapies for leukemia in a few years.

New nanotechnology “traps” viruses before they infect host cells

January 7, 2014 9:57 am | News | Comments

Developed by a team of researchers in Massachusetts and California, “nanotraps” are nanoparticles that act as viral traps using specific molecules found naturally within the human body. Initial testing on the treatments, which each use tiny, non-toxic particles that can be injected, inhaled, or eaten, has shown them to be effective and safe against a multitude of strains of disease.

Biomaterials get stem cells to commit to a bony future

January 7, 2014 8:34 am | News | Comments

With the help of biomimetic matrices, a research team led by bioengineers at the Univ. of California, San Diego has discovered exactly how calcium phosphate can coax stem cells to become bone-building cells. The team has traced a surprising pathway from these biomaterials to bone formation. Their findings will help them refine the design of biomaterials that encourage stem cells to give rise to new bone.

Advertisement

Nanoparticle interactions: The hidden ties that bind

December 26, 2013 12:00 pm | News | Comments

Molecules anchored to the surfaces of nanoparticles modify and even control many characteristics of the particles, including how they interact with cells or react to light. Taking advantage of advanced instrumental capabilities, researchers have built a specially designed experimental cell to successfully deduce the how molecules of carboxylic acid, a common organic acid found in nature, bind to ceria nanoparticle surfaces.

First plant-based “microswimmers” could propel drugs to the right location

December 19, 2013 7:30 pm | News | Comments

In the quest to shrink motors so they can maneuver in tiny spaces like inside and between human cells, scientists have taken inspiration from millions of years of plant evolution and incorporated, for the first time, corkscrew structures from plants into a new kind of helical “microswimmer.” The low-cost development, which appears in ACS’ journal Nano Letters, could be used on a large scale in targeted drug delivery and other applications.

3-D printed implants may soon fix complex injuries

December 13, 2013 2:54 pm | by Katie Feldman, National Science Foundation | News | Comments

Researchers are adapting technology for 3-D printing metals, ceramics, and other materials to create custom medical implants designed to fix complicated injuries. Using a technology called Laser Engineered Net Shaping (LENS), these new implants integrate into the body more effectively, encouraging bone regrowth that ultimately results in a stronger, longer lasting implant.

New method efficiently and easily bonds gels and biological tissues

December 12, 2013 8:49 am | News | Comments

A research team in France has invented an adhesion method that creates a strong bond between two gels by spreading on their surface a solution containing nanoparticles. Until now, there was no entirely satisfactory method of obtaining adhesion between two gels or two biological tissues. The bond is resistant to water and uses no polymers or chemical reactions.

Innovative contact lens delivers glaucoma medication continuously

December 9, 2013 10:10 am | News | Comments

For nearly 50 years, contact lenses have been proposed as a means of ocular drug delivery that may someday replace eye drops, but achieving controlled drug release has been a significant challenge. Researchers in Massachusetts have made an advance in this direction with the development of a drug-eluting contact lens designed for prolonged delivery glaucoma medication.

Recycled plastic effective in killing drug-resistant fungi

December 9, 2013 9:46 am | News | Comments

Researchers in Singapore and at IBM Research in California have discovered a new, potentially life-saving application for polyethylene terephthalate (PET), which is widely used to make plastic bottles. They have successfully converted PET into a non-toxic biocompatible material with superior fungal killing properties. This could help prevent and treat various fungus-induced diseases such as keratitis.

Micro­robots could become soft, move like biological organisms

December 6, 2013 8:49 am | News | Comments

A researcher team from Spain and Italy say that when envisioning in vivo microrobots of the future, we should forget cogwheels, pistons and levers. These miniature robots will be soft, and behave much like euglenids, tiny unicellular aquatic animals. Their work in studying these creatures have given them insights on how to design soft robots with effective mechanical structures.

Osteoarthritis medicine delivered on-demand

December 5, 2013 9:23 am | News | Comments

Scientists are reporting development of a squishy gel that, when compressed at a key location such as a painful knee joint, releases anti-inflammatory medicine. The new material could someday deliver medications when and where osteoarthritis patients need it most.

Engineer, cardiologist team up to make implanted devices “sticky”

November 27, 2013 9:24 am | by Eric Swedlund, Univ. of Arizona | News | Comments

Univ. of Arizona agricultural and biosystems engineering associate professor Jeong-Yeol Yoon and cardiology professor Dr. Marvin Slepian are testing nanotextured surfaces to improve how cardiovascular implant devices are attached in the body. The goal is to create a selectively sticky surface, favoring endothelial cell attachment, without favoring platelet attachment.

Study: Hybrid nanomaterials could replace human tissue, today’s pills

November 22, 2013 8:12 am | News | Comments

A team of researchers has uncovered critical information that could help scientists understand how protein polymers interact with other self-assembling biopolymers. The research helps explain naturally occurring nanomaterial within cells and could one day lead to engineered bio-composites for drug delivery, artificial tissue, bio-sensing, or cancer diagnosis.

“Molecular Velcro” may lead to cost-effective alternatives to natural antibodies

October 30, 2013 10:49 am | News | Comments

Taking inspiration from the human immune system, researchers at Lawrence Berkeley National Laboratory have created a new material that can be programmed to identify an endless variety of molecules. The new material resembles tiny sheets of Velcro, each just one-hundred nanometers across. But instead of securing your sneakers, this molecular Velcro mimics the way natural antibodies recognize viruses and toxins.

SRC launches synthetic biology research effort at six universities

October 24, 2013 9:04 am | News | Comments

Semiconductor Research Corporation (SRC) has launched a new research program on hybrid bio-semiconductor systems that they hope will provide insights and opportunities for future information and communication technologies. The Semiconductor Synthetic Biology (SSB) program will initially fund research at six universities.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading