Advertisement
Biomaterials
Subscribe to Biomaterials
View Sample

FREE Email Newsletter

Silk coat for diamonds makes sleek new imaging, drug delivery tool

January 27, 2014 2:12 pm | News | Comments

Silk and diamonds aren't just for ties and jewelry anymore. They're ingredients for a new kind of tiny glowing particle that could provide doctors and researchers with a novel technique for biological imaging and drug delivery. Just tens of nanometers across, the new particles are made of diamond, covered in silk and can be injected into living cells.

Seashells inspire new way to preserve bones for archeologists, paleontologists

January 22, 2014 9:04 am | News | Comments

Recreating the story of humanity’s past by studying ancient bones can hit a snag when they deteriorate, but scientists are now reporting an advance inspired by seashells that can better preserve valuable remains. Their findings, which appear in Langmuir, could have wide-ranging implications for both archeology and paleontology.

Researchers develop artificial bone marrow

January 10, 2014 12:51 pm | News | Comments

A new porous structure under development in German possesses essential properties of natural bone marrow and can be used for the reproduction of stem cells in the laboratory. The specific reproduction of these hematopoietic cells outside the body might facilitate new therapies for leukemia in a few years.

Advertisement

New nanotechnology “traps” viruses before they infect host cells

January 7, 2014 9:57 am | News | Comments

Developed by a team of researchers in Massachusetts and California, “nanotraps” are nanoparticles that act as viral traps using specific molecules found naturally within the human body. Initial testing on the treatments, which each use tiny, non-toxic particles that can be injected, inhaled, or eaten, has shown them to be effective and safe against a multitude of strains of disease.

Biomaterials get stem cells to commit to a bony future

January 7, 2014 8:34 am | News | Comments

With the help of biomimetic matrices, a research team led by bioengineers at the Univ. of California, San Diego has discovered exactly how calcium phosphate can coax stem cells to become bone-building cells. The team has traced a surprising pathway from these biomaterials to bone formation. Their findings will help them refine the design of biomaterials that encourage stem cells to give rise to new bone.

Nanoparticle interactions: The hidden ties that bind

December 26, 2013 12:00 pm | News | Comments

Molecules anchored to the surfaces of nanoparticles modify and even control many characteristics of the particles, including how they interact with cells or react to light. Taking advantage of advanced instrumental capabilities, researchers have built a specially designed experimental cell to successfully deduce the how molecules of carboxylic acid, a common organic acid found in nature, bind to ceria nanoparticle surfaces.

First plant-based “microswimmers” could propel drugs to the right location

December 19, 2013 7:30 pm | News | Comments

In the quest to shrink motors so they can maneuver in tiny spaces like inside and between human cells, scientists have taken inspiration from millions of years of plant evolution and incorporated, for the first time, corkscrew structures from plants into a new kind of helical “microswimmer.” The low-cost development, which appears in ACS’ journal Nano Letters, could be used on a large scale in targeted drug delivery and other applications.

3-D printed implants may soon fix complex injuries

December 13, 2013 2:54 pm | by Katie Feldman, National Science Foundation | News | Comments

Researchers are adapting technology for 3-D printing metals, ceramics, and other materials to create custom medical implants designed to fix complicated injuries. Using a technology called Laser Engineered Net Shaping (LENS), these new implants integrate into the body more effectively, encouraging bone regrowth that ultimately results in a stronger, longer lasting implant.

Advertisement

New method efficiently and easily bonds gels and biological tissues

December 12, 2013 8:49 am | News | Comments

A research team in France has invented an adhesion method that creates a strong bond between two gels by spreading on their surface a solution containing nanoparticles. Until now, there was no entirely satisfactory method of obtaining adhesion between two gels or two biological tissues. The bond is resistant to water and uses no polymers or chemical reactions.

Innovative contact lens delivers glaucoma medication continuously

December 9, 2013 10:10 am | News | Comments

For nearly 50 years, contact lenses have been proposed as a means of ocular drug delivery that may someday replace eye drops, but achieving controlled drug release has been a significant challenge. Researchers in Massachusetts have made an advance in this direction with the development of a drug-eluting contact lens designed for prolonged delivery glaucoma medication.

Recycled plastic effective in killing drug-resistant fungi

December 9, 2013 9:46 am | News | Comments

Researchers in Singapore and at IBM Research in California have discovered a new, potentially life-saving application for polyethylene terephthalate (PET), which is widely used to make plastic bottles. They have successfully converted PET into a non-toxic biocompatible material with superior fungal killing properties. This could help prevent and treat various fungus-induced diseases such as keratitis.

Micro­robots could become soft, move like biological organisms

December 6, 2013 8:49 am | News | Comments

A researcher team from Spain and Italy say that when envisioning in vivo microrobots of the future, we should forget cogwheels, pistons and levers. These miniature robots will be soft, and behave much like euglenids, tiny unicellular aquatic animals. Their work in studying these creatures have given them insights on how to design soft robots with effective mechanical structures.

Osteoarthritis medicine delivered on-demand

December 5, 2013 9:23 am | News | Comments

Scientists are reporting development of a squishy gel that, when compressed at a key location such as a painful knee joint, releases anti-inflammatory medicine. The new material could someday deliver medications when and where osteoarthritis patients need it most.

Advertisement

Engineer, cardiologist team up to make implanted devices “sticky”

November 27, 2013 9:24 am | by Eric Swedlund, Univ. of Arizona | News | Comments

Univ. of Arizona agricultural and biosystems engineering associate professor Jeong-Yeol Yoon and cardiology professor Dr. Marvin Slepian are testing nanotextured surfaces to improve how cardiovascular implant devices are attached in the body. The goal is to create a selectively sticky surface, favoring endothelial cell attachment, without favoring platelet attachment.

Study: Hybrid nanomaterials could replace human tissue, today’s pills

November 22, 2013 8:12 am | News | Comments

A team of researchers has uncovered critical information that could help scientists understand how protein polymers interact with other self-assembling biopolymers. The research helps explain naturally occurring nanomaterial within cells and could one day lead to engineered bio-composites for drug delivery, artificial tissue, bio-sensing, or cancer diagnosis.

“Molecular Velcro” may lead to cost-effective alternatives to natural antibodies

October 30, 2013 10:49 am | News | Comments

Taking inspiration from the human immune system, researchers at Lawrence Berkeley National Laboratory have created a new material that can be programmed to identify an endless variety of molecules. The new material resembles tiny sheets of Velcro, each just one-hundred nanometers across. But instead of securing your sneakers, this molecular Velcro mimics the way natural antibodies recognize viruses and toxins.

SRC launches synthetic biology research effort at six universities

October 24, 2013 9:04 am | News | Comments

Semiconductor Research Corporation (SRC) has launched a new research program on hybrid bio-semiconductor systems that they hope will provide insights and opportunities for future information and communication technologies. The Semiconductor Synthetic Biology (SSB) program will initially fund research at six universities.

Vitamin boost for 3-D printing

October 23, 2013 7:52 am | News | Comments

Researchers from North Carolina State Univ., the Univ. of North Carolina at Chapel Hill and Laser Zentrum Hannover have discovered that a naturally occurring compound can be incorporated into 3-D printing processes to create medical implants out of non-toxic polymers. The compound is riboflavin, which is better known as vitamin B2.

Physical cues help mature cells revert into embryonic-like stem cells

October 21, 2013 7:49 am | News | Comments

Bioengineers at the Univ. of California, Berkeley have shown that physical cues can replace certain chemicals when nudging mature cells back to a pluripotent stage, capable of becoming any cell type in the body. The researchers grew fibroblasts on surfaces with parallel grooves measuring 10 µm wide and 3 µm high.

Football-shaped particles bolster body’s defense against cancer

October 14, 2013 7:58 am | News | Comments

Researchers at Johns Hopkins Univ. have succeeded in making flattened, football-shaped artificial particles that impersonate immune cells. These football-shaped particles seem to be better than the typical basketball-shaped particles at teaching immune cells to recognize and destroy cancer cells in mice.

Creating a permanent bacteria barrier

October 11, 2013 9:35 am | by Rob Matheson, MIT News Office | News | Comments

Any medical device implanted in the body attracts bacteria to its surface, causing infections and thrombosis that lead to many deaths annually. Devices can be coated with antibiotics and blood thinners, but these eventually dissolve, limiting their longevity and effectiveness. Now, Semprus BioSciences is developing a novel biomaterial for implanted medical devices that barricades these troublesome microbes from the device’s surface.

Spider’s super-thin ribbons key to silk tech

October 10, 2013 8:57 am | News | Comments

The silk of a spider feared for its venomous bite could be the key to creating new super-sticky films and wafer-thin electronics and sensors for medical implants that are highly compatible with the human body. A team of scientists studied the brown recluse spider (Loxosceles recluse), which produces super-thin ribbons of silk as opposed to the round fibers typically spun by spiders. 

X-ray science taps bug biology to design better materials, reduce pollution

September 18, 2013 8:01 am | News | Comments

Bug spray, citronella candles, mosquito netting—most people will do anything they can to stay away from insects during the warmer months. But those creepy crawlers we try so hard to avoid may offer substantial solutions to some of life’s problems. Researchers using x-ray technology at the Advanced Photon Source were able to take an inside look at several insects, gathering results that go beyond learning about insect physiology and biology.

Researchers fabricate camouflage coating from squid protein

September 10, 2013 8:18 am | News | Comments

What can the U.S. military learn from a common squid? A lot about how to hide from enemies, according to researchers at Univ. of California, Irvine. As detailed in a study published online in Advanced Materials, they have created a biomimetic infrared camouflage coating inspired by Loliginidae, also known as pencil squids or your everyday calamari.

Genome of elastomeric materials creates novel materials

September 10, 2013 7:54 am | News | Comments

A wide range of biologically inspired materials may now be possible by combining protein studies, materials science and RNA sequencing, according to an international team of researchers. The researchers looked at proteins because they are the building blocks of biological materials and also often control sequencing, growth and self-assembly. RNA produced from the DNA in the cells is the template for biological proteins.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading