Advertisement
Adhesives
Subscribe to Adhesives

The Lead

Engineers climb walls using gecko-inspired climbing device

November 25, 2014 8:54 am | by Bjorn Carey, Stanford News Service | Videos | Comments

If you spot someone stuck to the sheer glass side of a building on the Stanford Univ. campus, it's probably Elliot Hawkes testing his dissertation work. Hawkes, a mechanical engineering graduate student, works with a team of engineers who are developing controllable, reusable adhesive materials that, like the gecko toes that inspire the work, can form a strong bond with smooth surfaces but also release with minimal effort.

Scientists discover the miracle of how geckos move, cling to ceilings

August 13, 2014 8:30 am | by David Stauth, Oregon State Univ. | News | Comments

Researchers at Oregon State Univ. have developed a model that explains how geckos, as well as...

NASA Langley workshop: Engineered materials for adhesion or abhesion

May 15, 2014 10:43 am | Videos | Comments

Scientists at NASA Langley Research Center have...

View Sample

FREE Email Newsletter

NASA Langley Workshop: NASA Engineered Materials for Adhesion or Abhesion

May 15, 2014 10:32 am | Events

Are you an adhesives or coatings manufacturer? Do you need to adhesively join parts? Or, do you need durable non-stick coatings? Then, make plans to attend this meeting! Learn about new advanced materials and processing methods to either enhance adhesion or to create non-stick surfaces.

New method efficiently and easily bonds gels and biological tissues

December 12, 2013 8:49 am | News | Comments

A research team in France has invented an adhesion method that creates a strong bond between two gels by spreading on their surface a solution containing nanoparticles. Until now, there was no entirely satisfactory method of obtaining adhesion between two gels or two biological tissues. The bond is resistant to water and uses no polymers or chemical reactions.

Magnetic pollen replicas offer multimodal adhesion

November 22, 2013 7:40 am | News | Comments

Researchers have created magnetic replicas of sunflower pollen grains using a wet chemical, layer-by-layer process that applies highly conformal iron oxide coatings. The replicas possess natural adhesion properties inherited from the spiky pollen particles while gaining magnetic behavior, allowing for tailored adhesion to surfaces.

Advertisement

Microfluidic material breakthrough allows wafer-scale mass production of lab-on-chip

November 1, 2013 12:04 pm | News | Comments

Belgian nanoelectronics research center Imec and JSR, a materials company based in Tokyo, Japan, announce that they have successfully used JSR’s innovative PA (Photo-patternable Adhesive) material for wafer-scale processing of lab-on-chip devices. Using this material, imec has processed microfluidic cell-sorter devices, merging microheaters and sensors with wafer-scale polymer microfluidics.

Scientists unravel widespread natural adhesion system

October 15, 2013 12:16 pm | News | Comments

During evolution, many plants and organisms have developed mushroom-shaped adhesive structures and organs that allow them to climb walls and grip surfaces. Through observations of these microstructures at speeds of up to 180,000 frames per second, scientists have discovered why the specific shape is advantageous for adhesion.

“Terminator”polymer regenerates itself

September 13, 2013 12:22 pm | News | Comments

Scientists in Spain have reported the first self-healing polymer that spontaneously and independently repairs itself without any intervention. The researchers have dubbed the material a “Terminator” polymer in tribute to the shape-shifting, molten T-100 terminator robot from the Terminator 2 film.

DNA glue directs tiny gel “bricks” to self-assemble

September 9, 2013 11:39 am | by Dan Ferber, Wyss Institute Communications | News | Comments

A team of researchers at Harvard Univ. has found a way to self-assemble complex structures out of gel “bricks” smaller than a grain of salt. The new method could help solve one of the major challenges in tissue engineering: creating injectable components that self-assemble into intricately structured, biocompatible scaffolds at an injury site to help regrow human tissues.

Strong Reversible Adhesive

August 28, 2013 1:22 pm | Award Winners

Typical adhesives are irreversible liquid-based glues that often require oven curing. Synthetic “gecko” adhesives avoid the use of liquid by relying on non-covalent interactions between microfibers and substrates, but it is weak, expensive to make and is not scalable. Developers at General Motors Research & Development Center now offer a third option that doesn’t require liquids, but is reversible and strong.

Advertisement

Designer glue improves lithium-ion battery life

August 20, 2013 8:11 am | News | Comments

When it comes to improving the performance of lithium-ion batteries, no part should be overlooked; not even the glue that binds materials together in the cathode, researchers at SLAC National Accelerator Laboratory and Stanford Univ. have found. Tweaking that material, which binds lithium sulfide and carbon particles together, created a cathode that lasted five times longer than earlier designs.

Choosing a wave could accelerate airplane maintenance

July 24, 2013 8:30 am | News | Comments

Ultrasonic waves can find bubbles and cracks in adhesive bonds holding airplane composite parts together, and now aerospace engineers can select the best frequencies to detect adhesive failures in hard-to-reach places more quickly, thanks to Penn State Univ. researchers.

Just hanging on: Why mussels are so good at it

July 23, 2013 12:37 pm | by David L. Chandler, MIT News Office | News | Comments

Unlike barnacles, which cement themselves tightly to surfaces, mussels dangle more loosely from these surfaces, attached by a collection of fine filaments known as byssus threads. This approach lets the creatures drift further out into the water, where they can absorb nutrients. Despite the fragile appearance of these threads, they can withstand impact forces that are nine times greater than forces exerted by stretching in one direction.

A new kind of chemical glue

May 30, 2013 7:36 am | by David L. Chandler, MIT News Office | News | Comments

Over the past three decades, researchers have found various applications of a method for attaching molecules to gold; the approach uses chemicals called thiols to bind the materials together. But while this technique has led to useful devices for electronics, sensing and nanotechnology, it has limitations. Now, a Massachusetts Institute of Technology team has found a new material that could overcome many of these limitations.

Research improves dry lubricant used in machinery, biomedical devices

May 17, 2013 10:44 am | News | Comments

Nearly everyone is familiar with the polytetrafluoroethylene (PTFE), otherwise known as Teflon. Famous for being “non-sticky” and water repellent, PTFE is a dry lubricant used on machine components everywhere. Recently, engineering researchers at the University of Arkansas found a way to make the polymer even less adhesive.

Advertisement

Cricket hair inspires flow sensor "cameras"

March 11, 2013 1:11 pm | News | Comments

Crickets use sensitive hairs on their cerci (projections on the abdomen) to detect predators. For these insects, air currents carry information about the location of nearby predators and the direction in which they are moving. Researchers in The Netherlands discovered they could use the same principle to create a new kind of “camera”, capable of imaging entire flow patterns rather than measuring flows at a single point. 

Adhesion system of fish studied to create bio-inspired adhesive

February 21, 2013 8:18 am | News | Comments

A new study provides details of the structure and tissue properties of the remora fish's unique adhesion system. The researchers plan to use this information to create an engineered reversible adhesive inspired by the remora that could be used to create pain- and residue-free bandages, attach sensors to objects in aquatic or military reconnaissance environments, replace surgical clamps, and help robots climb.

Mussels inspire innovative new adhesive for surgery

January 9, 2013 6:33 pm | News | Comments

Mussels can be a mouthwatering meal, but the chemistry that lets mussels stick to underwater surfaces may also provide a highly adhesive wound closure and more effective healing from surgery. Researchers have incorporated the chemical structure from the mussel's adhesive protein into the design of an injectable synthetic polymer. The bioadhesives adhere well in wet environments, have controlled degradability, and improved biocompatibility.

Scotch tape finds new use as grasping "smart material"

November 21, 2012 7:55 am | News | Comments

Scotch tape, a versatile household staple and a mainstay of holiday gift-wrapping, may have a new scientific application as a shape-changing "smart material." Researchers used a laser to form slender half-centimeter-long fingers out of the tape. When exposed to water, the four wispy fingers morph into a tiny robotic claw that captures water droplets.

Gecko feet hold clues to creating bandages that stick when wet

August 10, 2012 3:45 am | News | Comments

Scientists already know that the tiny hairs on geckos' toe pads enable them to cling, like Velcro, to vertical surfaces. Now, University of Akron researchers are unfolding clues to the reptiles' gripping power in wet conditions in order to create a synthetic adhesive that sticks when moist or on wet surfaces.

Scientists gain understanding of self-cleaning gecko foot hair

June 22, 2012 6:54 am | News | Comments

Imagine the money you'd save if you bought a roll of duct tape and could use it over and over again without having to toss it in the garbage after one use. Wall-climbing robots, bioadhesives, or other sticky substances can benefit greatly from a recent discovery about the self-cleaning and reuse abilities of a gecko's foot hair.

3D nano boxes self-assemble with precision

April 23, 2012 2:22 pm | by Miles O'Brien and Jon Baime, Science Nation | News | Comments

Without any tweezers or human intervention, nano boxes and other higher-order polyhedra have been self-assembled by engineers at Johns Hopkins University and mathematicians at Brown University. The process depends on flattening the panels of the structures and relying on the interaction of thermal changes and surface tension.

Magnetic testing process could deliver more reliable electronics

April 13, 2012 9:14 am | News | Comments

Thermal stress can cause debonding between thin layers in microelectronics. Taking advantage of the force generated by magnetic repulsion, researchers have developed a new technique for measuring the adhesion strength between thin films of materials used in these devices, and they hope to apply the method improve solar cells or microelectromechanical devices.

New nanoglue is thin, supersticky

March 5, 2012 10:26 am | News | Comments

Engineers at the University of California, Davis, have invented a superthin nanoglue that could be used in new-generation microchip fabrication. Conventional glues form a thick layer between two surfaces, while the new nanoglue, which conducts heat and can be printed, or applied, in patterns, forms a layer the thickness of only a few molecules.

3M adhesive helps set new Guinness World Records title

March 2, 2012 5:14 am | News | Comments

3M Scotch-Weld Instant Adhesive was recently responsible for a Guinness World Records-setting feat, lifting a 8.1 metric ton forklift in the air for one hour. The successful demonstration set a new world record for the heaviest weight lifted with glue.

Inspired by gecko feet, scientists invent super-adhesive material

February 16, 2012 11:21 am | News | Comments

For years, biologists have been amazed by the power of gecko feet, which let these lizards produce an adhesive force roughly equivalent to carrying nine pounds up a wall without slipping. Now, a team from University of Massachusetts Amherst has discovered exactly how the gecko does it, leading them to invent "Geckskin," a device that can hold 700 lbs on a smooth wall.

Manipulating way bacteria 'talk' could have practical applications

January 4, 2012 3:44 am | News | Comments

By manipulating the way bacteria "talk" to each other, researchers at Texas A&M University have achieved an unprecedented degree of control over the formation and dispersal of biofilms—a finding with potentially significant health and industrial applications, particularly to bioreactor technology.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading