Advertisement
Semiconductor Manufacturing
Subscribe to Semiconductor Manufacturing

The Lead

Doped graphene nanoribbons with potential

September 9, 2014 7:40 am | News | Comments

Typically a highly conductive material, graphene becomes a semiconductor when prepared as an ultra-narrow ribbon. Recent research has now developed a new method to selectively dope graphene molecules with nitrogen atoms. By seamlessly stringing together doped and undoped graphene pieces, ”heterojunctions” are formed in the nanoribbons, allowing electric current to flow in only one direction when voltage is applied.

Six nines: Ultra-enriched silicon paves the road to quantum computing

August 12, 2014 12:27 pm | News | Comments

Using a relatively straightforward technique, a...

Pfeiffer Vacuum joins Facilities 450mm Consortium

August 6, 2014 11:47 am | News | Comments

The Facilities 450mm Consortium (F450C), a...

Driving Back Defects

August 6, 2014 10:13 am | by Paul Livingstone | Articles | Comments

Traditional lithography is based on a simple principle: Oil and water don’t mix. The method,...

View Sample

FREE Email Newsletter

Joint Singapore-U.S. program to increase IC circuit designers globally

July 22, 2014 1:37 pm | News | Comments

North Carolina-based Semiconductor Research Corporation (SRC) and Singapore’s Silicon Cloud International (SCI) are launching a new program aimed at globally advancing integrated circuit (IC) design education and research. The program will focus on increasing the quantity of IC designers in university systems worldwide, and enhancing expertise in secure cloud computing architecture.

Nano-imaging probes molecular disorder

June 13, 2014 10:59 am | News | Comments

In semiconductor-based components, high mobility of charge-carrying particles is important. In organic materials, however, it is uncertain to what degree the molecular order within the thin films affects the mobility and transport of charge carriers. Using a new imaging method, researchers have shown that thin-film organic semiconductors contain regions of structural disorder that could inhibit the transport of charge and limit efficiency.

New circuit design functions at temperatures greater than 650 F

June 13, 2014 8:16 am | News | Comments

Engineers at the Univ. of Arkansas have designed integrated circuits that can survive at temperatures greater than 350 C—or roughly 660 F. The team achieved the higher performance by combining silicon carbide with wide temperature design techniques. In the world of power electronics and integrated circuits, their work represents the first implementation of a number of fundamental analog, digital and mixed-signal blocks.

Advertisement

Researchers introduce new benchmark for field-effect transistors

June 11, 2014 3:32 pm | News | Comments

At the 2014 Symposium on VLSI Technology in Triangle Park, N.C., researchers from the Univ. of California, Santa Barbara introduced the highest-performing class III-V metal-oxide semiconductor field-effect transistors (MOSFETs) yet demonstrated. The new MOSFETs exhibit, in an industry first, on-current, off-current and operating voltage comparable to or exceeding production silicon devices, while also staying relatively compact.

New prototype transistor consumes little power

June 4, 2014 7:37 am | News | Comments

The basic element of modern electronics, namely the transistor, suffers from significant current leakage. By enveloping a transistor with a shell of piezoelectric material, which distorts when voltage is applied, researchers in the Netherlands were able to reduce this leakage by a factor of five compared to a transistor without this material.

New supercapacitor design stands up to abuse

May 20, 2014 7:52 am | by David Salisbury, Vanderbilt Univ. | News | Comments

Modern supercapacitors store ten times less energy than a lithium-ion battery but can last a thousand times longer. The main drawback of supercapacitors, however, is the inability to cope with stresses such as pressure and vibration. Researchers have developed a new supercapacitor that operates flawlessly in storing and releasing electrical charge while subject to stresses or pressures up to 44 psi and vibrational accelerations over 80 g.

Nanowire-bridging transistors open way to next-generation electronics

May 15, 2014 11:54 am | News | Comments

A new approach to integrated circuits, combining atoms of semiconductor materials into nanowires and structures on top of silicon surfaces, shows promise for a new generation of fast, robust electronic and photonic devices. Engineers in California have recently demonstrated 3-D nanowire transistors using this approach that open exciting opportunities for integrating other semiconductors, such as gallium nitride, on silicon substrates.

New level of control gained for promising class of semiconductor

April 1, 2014 3:33 pm | News | Comments

Germanium monosulfide (GeS) is emerging as one of the most important class "IV–VI" semiconductor materials with potential in optoelectronics applications for telecommunications and computing. Adding a new element of control to preparation of this material, researchers in China have found a convenient way to selectively prepare GeS nanostructures, including nanosheets and nanowires, that are more active than their bulk counterparts

Advertisement

Ultra-thin light detectors combine two very different technologies

March 27, 2014 9:36 am | News | Comments

Until now, it has been hard to couple light generation into layered semiconductor systems. Scientists in Austria have recently solved this problem using metamaterials, which are able to manipulate light in the terahertz range due to their special microscopic structure. This represents the first combination of metamaterials and quantum cascade structures.  

Micro systems with big commercial potential featured in SPIE journal

March 26, 2014 9:28 am | News | Comments

Commercial demand is driving high-tech research and development in micro-optoelectromechanical systems (MOEMS) for diverse applications such as space exploration, wireless systems, and healthcare. A new special section on Emerging MOEMS Technology and Applications in the current issue of the Journal of Micro/Nanolithography, MEMS, and MOEMS discusses these recent breakthrough achievements.

Source-gated transistor could pave the way for flexible gadgets

March 25, 2014 1:06 pm | News | Comments

Existing transistors act as electronic switches, altering current flow through a semiconductor by controlling the bias voltage across the channel region. A new electronic component, called a source-gated transistor, has been developed in the U.K. and exploits physical effects such as the Schottky barriers at metal-semiconductor contacts. This innovation could improve the reliability of future digital circuits used within flexible gadgets.

Imec achieves record 8.4% efficiency in fullerene-free organic solar cells

March 11, 2014 9:50 am | News | Comments

Organic solar cells are a compelling thin-film photovoltaic technology in part because of their compatibility with flexible substrates and tunable absorption window. Belgium-based chipmaker imec has set a new conversion efficiency record of 8.4% for this type of cell by developing fullerene-free acceptor materials and a new multilayer semiconductor device structure.

LED lamps: Less energy, more light with gallium nitride

March 7, 2014 12:55 pm | News | Comments

Light-emitting diodes (LEDs) are durable and save energy. Now, researchers have found a way to make LED lamps even more compact while supplying more light than commercially available models. The key to this advance are a new type of transistors made of the semiconductor material gallium nitride.

Advertisement

New record set for data-transfer speeds

February 25, 2014 1:31 pm | News | Comments

Researchers at IBM have set a new record for data transmission over a multimode optical fiber, a type of cable that is typically used to connect nearby computers within a single building or on a campus. The data was sent at a rate of 64 Gb/s over a cable 57-m long using a type of laser called a vertical-cavity surface-emitting laser. This rate is 2.5 times faster than the capabilities of today's typical commercial technology.

3-D-stacked hybrid SRAM cell to be built by European scientists

February 7, 2014 9:49 am | News | Comments

European scientists from both academia and industry have begun an ambitious new research project focused on an alternative approach to extend Moore's Law. The research project, coordinated IBM Research in Zurich and called COMPOSE³, is based on the use of new materials to replace today's silicon, and on taking an innovative design approach where transistors are stacked vertically, known as 3-D stacking.

Scientists produce first ever atom-by-atom simulation of ALD nanoscale film growth

February 5, 2014 1:18 pm | News | Comments

Researchers at Tyndall National Institute in Ireland have produced the first ever atom-by-atom simulation of nanoscale film growth by atomic layer deposition (ALD), a thin-film technology used in the production of silicon chips. The accomplishment required the acquisition of the complete set of hundreds of ALD reactions at the quantum mechanical level.

Self-aligning DNA wires have been constructed for nanoelectronics

January 30, 2014 11:46 am | News | Comments

Continuous miniaturization in microelectronics is nearing physical limits, so researchers are seeking new methods for device fabrication. One promising candidate is a DNA origami technique in which individual strands of the biomolecule self-assemble into arbitrarily-shaped nanostructures. A new simpler strategy combines DNA origami with self-organized pattern formation to do away with elaborate procedures for positioning DNA structures.

Staying cool in the nanoelectric universe by getting hot

January 22, 2014 11:40 am | by Cory Nealon, Univ. at Buffalo | News | Comments

New research hints that nanodevices in microcircuits can protect themselves from heat generation through the transformation of nanotransistors into quantum states. The finding, demonstrated in nanoscale semiconductors devices, could boost computing power without large-scale changes to electronics.

From a carpet of nanorods to a thin film solar cell absorber within seconds

January 22, 2014 11:14 am | News | Comments

Researchers in Ireland and Germany have discovered a novel solid state reaction which lets kesterite grains grow within a few seconds and at relatively low temperatures. The work points towards a new pathway for the fabrication of thin microcrystalline semiconductor films without the need of expensive vacuum technology.

Pushing the thermal limits of nanoscale SQUIDs

January 20, 2014 6:41 pm | News | Comments

Superconducting quantum interference devices (SQUIDs) are incredibly sensitive magnetic flux sensors which have been limited in their applications because of thermal challenges at ultralow temperatures. Researchers in the U.K. have succeeded in overcoming this difficulty by introducing a new type of nanoscale SQUID based on optimized proximity effect bilayers.

ORNL devises recipe to fine-tune diameter of silica rods

December 16, 2013 3:22 pm | News | Comments

The goal of fabricating fixed-size one-dimensional silica structures and being able to precisely control the diameter during growth has long eluded scientists. Now, Oak Ridge National Laboratory researchers Panos Datskos and Jaswinder Sharma have demonstrated what they describe as the addressable local control of diameter of each segment of the silica rod.

Organic lights and solar cells, straight from the printer

November 4, 2013 2:17 pm | News | Comments

Flickering façades, curved monitors, flashing clothing, fluorescent wallpaper, flexible solar cells—and all printable. This is no make-believe vision of the future; it will soon be possible using a new printing process for organic light-emitting diodes.

Microfluidic material breakthrough allows wafer-scale mass production of lab-on-chip

November 1, 2013 12:04 pm | News | Comments

Belgian nanoelectronics research center Imec and JSR, a materials company based in Tokyo, Japan, announce that they have successfully used JSR’s innovative PA (Photo-patternable Adhesive) material for wafer-scale processing of lab-on-chip devices. Using this material, imec has processed microfluidic cell-sorter devices, merging microheaters and sensors with wafer-scale polymer microfluidics.

Smartwatches abound. But who really wants one?

October 30, 2013 9:00 am | by Anick Jesdanun, AP Technology Writer | News | Comments

If consumer electronics companies are to be believed, someone on your holiday shopping list is just dying for a wristwatch that displays message alerts and weather updates. Samsung and Sony have them, Google and Apple are rumored to be developing them. But some experts say it's a product in search of a market, and an expensive one at that.

Photonics breakthrough could allow faster electronics

October 1, 2013 1:36 pm | News | Comments

An industry-academic partnership has created two different optical components that can be fabricated within the same processes already used in industry to create today’s electronic microprocessors. The modulators, which are structures that detect electrical signals and translate them into optical waves, use light instead of electrical wires to communicate with transistors on a single chip.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading