Advertisement
Processing
Subscribe to Processing

The Lead

Six nines: Ultra-enriched silicon paves the road to quantum computing

August 12, 2014 12:27 pm | News | Comments

Using a relatively straightforward technique, a team of NIST researchers has created what may be the most highly enriched silicon currently being produced. The material is more than 99.9999% pure silicon-28, with less than 1 part per million (ppm) of the problematic isotope silicon-29. Many quantum computing schemes require isotopically pure silicon, for example to act as a substrate for qubits.

Driving Back Defects

August 6, 2014 10:13 am | by Paul Livingstone | Articles | Comments

Traditional lithography is based on a simple principle: Oil and water don’t mix. The method,...

A new way to make sheets of graphene

May 23, 2014 7:39 am | by David L. Chandler, MIT News Office | News | Comments

Graphene’s promise as a material for new kinds of electronic devices, among other uses, has led...

New research method produces large volumes of high-quality graphene

April 21, 2014 8:45 am | News | Comments

Researchers in Ireland have used a simple method...

View Sample

FREE Email Newsletter

Researchers develop intrinsically unstacked double-layer graphene

March 4, 2014 3:35 pm | News | Comments

The huge surface area and strong interactions between graphene layers causes facile “stacking” behavior that dramatically reduces available surface area, inhibiting graphene electronic properties. Researchers have tried to prevent this with carbon black, but this also carries undesirable property changes. By introducing protuberances on graphene during synthesis, researchers in China have found a solution to the stacking problem.

New chemistry could make it easier to design materials to order

February 21, 2014 10:59 am | News | Comments

Researchers in the U.K. have developed a method of controlling the composition of a range of polymers, the large molecules that are commonly used as plastics and fibers. They have demonstrated how the chemical reactions can be manipulated, especially in fixing the composition of a polymer using a mixture of up to three different monomers. The secret lies in understanding and switching “on” and “off” the catalyst used to make the polymers.

Self-organization controls “length” of supramolecular polymers

February 4, 2014 9:08 am | News | Comments

In a world’s first, researchers at the National Institute of Materials Science in Japan have succeeded in controlling the length of a one-dimensional, or supramolecular, assembly of molecules. Their method involves molecular self-organization, which until now has not been practical for polymer synthesis because of a lack of knowledge about the interplay of organizational pathways.

Advertisement

To clean up coal, Obama pushes more oil production

December 23, 2013 10:31 am | by Dina Cappiello, Associated Press | News | Comments

America's newest, most expensive coal-fired power plant is hailed as one of the cleanest on the planet, thanks to government-backed technology that removes carbon dioxide and keeps it out of the atmosphere. But once the carbon is stripped away, it will be used to do something that is not so green at all. It will extract oil.

Ultra-thin insulation coating makes superconducting wires thinner, more efficient

August 28, 2013 8:19 am | News | Comments

Researchers from the RIKEN Center for Life Science Technologies and Chiba Univ. have developed a high-temperature superconducting wire with an ultrathin polyimide coating only 4 micrometers thick, more than 10 times thinner than the conventional insulation used for high-temperature superconducting wires. The breakthrough should help the development of more compact superconducting coils for medical and scientific devices.

Thin, flexible glass means new capabilities for energy storage

July 24, 2013 11:07 am | News | Comments

Thin glass is already widely used for displays. But even thinner glass, about one-tenth the thickness of display glass, can be customized to store energy at high temperatures. Recent experiments by a partnership of academic and industrial researchers have investigated various alkali-free glass compositions and thicknesses, and has resulted in inexpensive roll-to-roll glass capacitors with high energy density and high reliability.

Self-adhesive tape simplifies the process of treating aluminum surfaces

July 3, 2013 2:51 pm | News | Comments

As a base metal, industrial aluminum often requires protection. Coatings, bondings, and paint are used, but require pre-treatment of aluminum, usually by “pickling” with acidic or alkaline baths. These are costly and inexact processes, even in spray form, which has led researchers in Germany to develop a pickling tape that pre-treats metal cleanly and locally.

Effective, inexpensive concrete made with ash from olive residue

May 2, 2013 2:10 pm | News | Comments

Researchers in Spain report they have produced self-compacting concrete with ash from the boiler combustion of olive pruning residue pellets. The plasticity and cohesion of this type of concrete, they say, means no compaction is needed when used in construction, which helps reduce cost. It also has slightly higher compression strength than conventional concrete.

Advertisement

Indiana using new concrete to increase bridge life span

January 24, 2013 12:04 pm | by Emil Venere, Purdue University | News | Comments

Civil engineers at Purdue University, working with the Indiana Department of Transportation, is in the process of deploying a new internally cured high-performance concrete on four bridges in Indiana. Typically curing methods involve a surface application of water on cement. The new method introduces water in internal pockets, enhancing curing efficacy and strengthening the finished concrete.

World’s smallest tunnels dug into graphite

January 23, 2013 5:26 pm | News | Comments

With a width of just a few nanometers, tiny tunnels recently created by researchers in Germany and the United States in graphite have been formed using heated nickel nanoparticles. Capillary action, aided by a hydrogen-to-methane gas conversion, has given scientists the basis for self-organized structuring of the interior. Nanoporous graphite could have many applications in medicine and battery technology.

Take a tour of the world’s most colorful factory

January 9, 2013 10:38 am | News | Comments

A new video released by the American Chemical Society provides a behind-the-scenes-look at the DayGlo Color Corp. factory, producer of the fluorescent paints that light up traffic cones, black light posters, hula-hoops, and other products. The factory is a “chemical landmark”, according to ACS, that is noted for its expertise in creating these glowing colors.

New quest to find other uses for abundant natural gas

December 21, 2012 9:08 am | News | Comments

Little more than a decade ago, the United States imported much of its natural gas. Today, the nation is tapping into its own natural gas reserves and is beginning to export natural gas to other countries. Experts are now looking to develop innovative processes that can readily and cost effectively make chemical intermediates like ethylene and propylene from natural gas instead of petroleum, which is declining in use.

New study shows saltwater algae viable for biofuels

November 26, 2012 5:32 pm | News | Comments

The Algae Biomass Organization, the trade association for the U.S. algae industry, this week hailed a  new University of California San Diego study showing saltwater algae is just as capable as freshwater algae in producing biofuels. The findings may mean that algae production will no longer be tied to constraints placed on the use of freshwater. They also suggest potential use of up to 10 million acres of land otherwise unsuitable for agriculture.

Advertisement

Researchers tap into CO2 storage potential of mine waste

November 15, 2012 12:08 pm | News | Comments

Digging, trucking and processing make mining an energy-intensive industry that emits greenhouse gases. However, mine waste rock that is rich in the mineral magnesium silicate has an inherent ability to react with CO2 and chemically "fix" it in place as magnesium carbonate. Mining engineers in Canada believe that this ability to store carbon dioxide could five to 10 times greater than total greenhouse gas production from some mine operations.

Autoclave aerated concrete: Building material for new millenium?

November 8, 2012 11:34 am | News | Comments

Although widespread rebuilding in the hard-hit New York metro region from Super Storm Sandy has not yet begun, New Jersey Institute of Technology professor Mohamed Mahgoub says when the hammers start swinging, it's time to look at autoclaved aerated concrete (AAC). A combination of finely ground sand, cement, quick lime, gypsum, aluminum, and water, AAC offers light weight, strength, and environmental friendliness, but has yet to catch on widely in the U.S.

Reclaiming rare earths

October 25, 2012 8:59 am | News | Comments

The prices for rare earths increased ten-fold between 2009 and 2011, prompting researchers at Ames Laboratory to revisit a rare earth recovery process once employed to make high-strength alloy. Now, they are working to more effectively remove neodymium, a rare earth element, from the mix of other materials in a rare earth magnet.

Graphene membranes enhance natural gas production, lower pollution

October 9, 2012 10:10 am | News | Comments

Engineering faculty and students at the University of Colorado Boulder have produced the first experimental results showing that atomically thin graphene membranes with tiny pores can effectively and efficiently separate gas molecules through size-selective sieving. Such capability could significantly enhance the efficiency of natural gas production while reducing carbon dioxide emissions at the plant.

Super-microbes engineered to solve world environmental problems

October 8, 2012 1:29 pm | News | Comments

Microorganisms isolated from nature use their own metabolism to produce certain chemicals. But they are often inefficient, so metabolic engineering is used to improve microbial performance. Recent work at the Korea Advanced Institute of Science and Technology highlights the potential for engineered organism, such as Escherichia coli, to aid in common industrial processes such as polymer production.

Silicon, erbium are built on one chip for the first time

September 24, 2012 4:44 am | News | Comments

Within optical microchips, light finds its way through waveguides made of silicon, and is amplified with the help of other semiconductors, such as gallium arsenide and erbium. But until recent work in The Netherlands, no chip existed on which both silicon and erbium-doped material had been successfully integrated. The new chip now amplifies light up to 170 Gbit/sec.

Scientists developing new material to increase shelf life of beer

September 18, 2012 6:06 am | News | Comments

Scientists at CRANN, a nanoscience institute based at Trinity College Dublin, have partnered with brewing company SABMiller on a project to increase the shelf life of bottled beer in plastic bottles. Their research centered on a nanostructured boron nitride additive that, when added to plastic bottles, will make them impervious to carbon dioxide and oxygen.

Two-faced materials boost hydrogen production

September 12, 2012 9:48 am | News | Comments

Though costly to produce, hydrogen is crucial for the oil-refining industry and the production of essential chemicals such as the ammonia used in fertilizers. The recent invention of a new photocatalyst may help the efficiency of this process. Nanometer-scale “Janus” structures consisting of cheap metal and oxide spheres were recently demonstrated as an excellent catalyst for a hydrogen-production reaction powered only by sunlight.

New technique builds graphene-boron sheets without substrate

August 29, 2012 11:34 am | by Anne Ju | News | Comments

Engineers at Cornell University have invented a way to pattern single atom films of graphene and boron nitride, an insulator, without the use of a silicon substrate. The technique, called patterned regrowth, is reliant on conventional silicon photolithography technology and could lead to substrate-free circuits that would be atomically thin yet retain high tensile strength and superior electrical performance.

Laser beam transforms into 3D “painter”

August 27, 2012 6:51 am | News | Comments

Microscale objects can be completed in a number of different ways. But tuning the chemical properties of that objects can be difficult. Using laser beams, researchers in Austria have shown that molecules can be fixed at exactly the right position in a 3D material. The new method can be used to grow biological tissue or to create micro-sensors.

Transparent solar cells for windows generate electricity

July 20, 2012 9:00 am | by Jennifer Marcus | News | Comments

Researchers in California have recently described a new kind of polymer solar cell that produces energy by absorbing mainly infrared light, not visible light, making the cells nearly 70% transparent to the human eye. The device was made from a photoactive plastic that converts infrared light into an electrical current.

Nanoscale scaffold, stem cells show promise in cartilage repair

July 18, 2012 4:30 am | News | Comments

Johns Hopkins Hospital  tissue engineers have used tiny, artificial fiber scaffolds thousands of times smaller than a human hair to help coax stem cells into developing into cartilage, the shock-absorbing lining of elbows and knees that often wears thin from injury or age.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading