Advertisement
Nanotechnology Manufacturing
Subscribe to Nanotechnology Manufacturing

The Lead

Making new materials an atomic layer at a time

April 17, 2014 9:36 am | News | Comments

Researchers in Pennsylvania and Texas have shown the ability to grow high quality, single-layer materials one on top of the other using chemical vapor deposition. This highly scalable technique, often used in the semiconductor industry, can produce materials with unique properties that could be applied to solar cells, ultracapacitors for energy storage, or advanced transistors for energy efficient electronics, among many other applications.

Nano shake-up: Nanocarriers fluctuate in size and shape

April 15, 2014 9:26 am | by Diane Kukich, Univ. of Delaware | News | Comments

Nanotechnology has unlocked new pathways for targeted drug delivery, including the use of...

A first principles approach to creating new materials

April 9, 2014 3:02 pm | by Marlene Cimons, National Science Foundation | News | Comments

Traditionally, scientists discover new materials,...

New level of control gained for promising class of semiconductor

April 1, 2014 3:33 pm | News | Comments

Germanium monosulfide (GeS) is emerging as one of...

View Sample

FREE Email Newsletter

Nano-paper filter can remove viruses

March 31, 2014 12:49 pm | by Linda Koffmar, Uppsala Univ. | News | Comments

Researchers in Sweden have designed a paper filter which is capable of removing virus particles with the efficiency matching that of the best industrial virus filters. The paper filter, which is manufactured according to traditional paper making processes, consists of 100% high purity cellulose nanofibers directly derived from nature.

Diamonds are an oil’s best friend

March 28, 2014 7:47 am | by Mike Williams, Rice Univ. | News | Comments

Scientists at Rice Univ. have mixed very low concentrations of diamond nanoparticles with mineral oil to test the nanofluid’s thermal conductivity and how temperature would affect its viscosity. They found it to be much better than nanofluids that contain higher amounts of oxide, nitride or carbide ceramics, metals, semiconductors, carbon nanotubes and other composite materials. In short, it is the best nanofluid for heat transfer.

Ultra-thin light detectors combine two very different technologies

March 27, 2014 9:36 am | News | Comments

Until now, it has been hard to couple light generation into layered semiconductor systems. Scientists in Austria have recently solved this problem using metamaterials, which are able to manipulate light in the terahertz range due to their special microscopic structure. This represents the first combination of metamaterials and quantum cascade structures.  

Advertisement

Thermoelectric capacity doubled with new thin film material

March 26, 2014 9:24 am | News | Comments

Because of their unique qualities, thermoelectric materials can convert waste heat into electricity. Researchers in the Netherlands have managed to significantly improve the efficiency of a common thermoelectric material by adjusting the fabrication conditions. The material may eventually be used to, for example, put the heat issued from a factory chimney or car exhaust pipe to good use.

Engineers design “living materials”

March 24, 2014 9:45 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology engineers have coaxed bacterial cells to produce biofilms that can incorporate non-living materials, such as gold nanoparticles and quantum dots. These “living materials” combine the advantages of live cells, which respond to their environment and produce complex biological molecules, with the benefits of nonliving materials, which add functions such as conducting electricity or emitting light.

Researchers grow carbon nanofibers using ambient air, without toxic ammonia

March 24, 2014 9:39 am | News | Comments

Vertically aligned carbon nanofibers (VACNFs) are a commonly manufactured material, but conventional techniques for creating them have relied on the use of ammonia gas, which is toxic. Though it not costly, it is also not free, either. Researchers in North Carolina have demonstrated that VACNFs can be manufactured using ambient air, making the manufacturing process safer and less expensive.

Lightweight construction materials achieve high stability

March 21, 2014 2:07 pm | News | Comments

Inspired by the framework structure of bones and the shell structure of bees’ honeycombs, researchers in Germany have developed microstructured lightweight construction materials of extremely high stability. Although its density is below that of water, the material’s stability relative to its weight exceeds that of massive materials, such as high-performance steel or aluminum. It was created using 3-D laser writing.

A layered nanostructure held together by DNA

March 20, 2014 12:40 pm | by David Lindley, Argonne National Laboratory | News | Comments

A new strategy for building nanoscale constructs uses the binding properties of complementary strands of DNA to attach nanoparticles to each other. A series of controlled steps builds up a layered thin-film nanostructure. Small-angle x-ray scattering analysis has revealed the precise form that the structures adopted, and points to ways of exercising still greater control over the final arrangement.

Advertisement

Roomy cages built from DNA

March 14, 2014 11:48 am | News | Comments

Move over, nanotechnologists, and make room for the biggest of the small. Scientists at the Harvard's Wyss Institute have built a set of self-assembling DNA cages one-tenth as wide as a bacterium. The structures are some of the largest and most complex structures ever constructed solely from DNA.

Graphene-copper sandwich may improve, shrink electronics

March 12, 2014 2:00 pm | by Sean Nealon, Univ. of Riverside, Calif. | News | Comments

Researchers have discovered that creating a graphene-copper-graphene “sandwich” strongly enhances the heat conducting properties of copper, a discovery that could further help in the downscaling of electronics.

Scientists create optical nanocavity to improve light absorption in semiconductors

March 7, 2014 1:14 pm | News | Comments

Experts from the Univ. of Buffalo (UB), helped by colleagues from two Chinese universities, have developed an optical "nanocavity" that could help increase the amount of light absorbed by ultrathin semiconductors. The advancement could lead to the creation of more powerful photovoltaic cells and improvements in video cameras and even hydrogen fuel, as the technology could aid the splitting of water using energy from light.

Researchers develop intrinsically unstacked double-layer graphene

March 4, 2014 3:35 pm | News | Comments

The huge surface area and strong interactions between graphene layers causes facile “stacking” behavior that dramatically reduces available surface area, inhibiting graphene electronic properties. Researchers have tried to prevent this with carbon black, but this also carries undesirable property changes. By introducing protuberances on graphene during synthesis, researchers in China have found a solution to the stacking problem.

How to create selective holes in graphene

February 25, 2014 7:55 am | by David L. Chandler, MIT News Office | News | Comments

Researchers have devised a way of making tiny holes of controllable size in sheets of graphene, a development that could lead to ultra-thin filters for improved desalination or water purification. The team of researchers succeeded in creating subnanoscale pores in a sheet of the one-atom-thick material, which is one of the strongest materials known.

Advertisement

Team develops chemical solution for graphene challenges

February 24, 2014 9:15 am | News | Comments

Previous efforts to create graphene nanoribbons followed a top-down approach, using lithography and etching process to try to cut ribbons out of graphene sheets. Cutting ribbons 2 nm-wide is not practical, however, and these efforts have not been very successful. Now, a research team has developed a chemical approach to mass producing these graphene nanoribbons. This process that may provide an avenue to harnessing graphene's conductivity.

New, improved photocatalytic materials developed in Japan

February 21, 2014 10:50 am | News | Comments

The scarcity of ultraviolet (UV) light in sunlight has held back the usefulness of titanium dioxide-based photocatalysts. Through the application of nanotechnology, researchers in Japan have recently succeeded in the development of better titanium dioxide-based material that can be activated by visible light. The solution lies in an array of nanoparticles that “simulate” the photoexcitation of UV light.

A stretchable highway for light

February 20, 2014 2:53 am | News | Comments

A team of Belgian researchers have made what may be the first optical circuit that uses interconnections that are not only bendable, but also stretchable. These new interconnections, made of a rubbery transparent material called PDMS, guide light along their path even when stretched up to 30% and when bent around an object the diameter of a human finger.

Researchers develop first single-molecule LED

February 13, 2014 9:42 am | News | Comments

A team in France has greatly miniaturized the light-emitting diode (LED) by creating one from a single polythiophene wire placed between the tip of a scanning tunneling microscope and a gold surface. This nanowire, which is made of the same hydrogen, carbon and sulfur components found in much larger LEDs, emits light only when the current passes in a certain direction.

New technology reconstructs smallest features of human fingerprints

February 12, 2014 8:42 am | News | Comments

An international partnerships is aiming to develop robust fingerprint sensors with resolution beyond today’s 500 dpi international standards, the minimum required by the U.S. Federal Bureau of Investigation. The new platform uses vertical piezoelectric nanowire matrices designed using multiphysics modeling software.

3-D-stacked hybrid SRAM cell to be built by European scientists

February 7, 2014 9:49 am | News | Comments

European scientists from both academia and industry have begun an ambitious new research project focused on an alternative approach to extend Moore's Law. The research project, coordinated IBM Research in Zurich and called COMPOSE³, is based on the use of new materials to replace today's silicon, and on taking an innovative design approach where transistors are stacked vertically, known as 3-D stacking.

Finding: Graphene ribbons are highly conductive at room temperature

February 6, 2014 12:40 pm | News | Comments

An international team of researchers from France and the United States have devised an entirely new way to synthesize graphene ribbons with defined, regular edges, allowing electrons to flow freely through the material. Demonstrating this phenomenon at room temperature, the material was shown to permit electron flow up to 200 times faster than through silicon.

Navy researchers create new type of graphene transport device

January 29, 2014 10:12 am | News | Comments

Scientists at the U.S. Naval Research Laboratory have created a new type of tunnel device structure in which the tunnel barrier and transport channel are made of the same material, graphene. Their work shows the highest spin injection values yet measured for graphene, opening an entirely new avenue for making highly functional, scalable graphene-based electronic and spintronic devices a reality.

New boron nanomaterial may be possible

January 27, 2014 1:53 pm | News | Comments

Graphene, a sheet of carbon one atom thick, may soon have a new nanomaterial partner. In the laboratory and on supercomputers, chemical engineers have determined that a unique arrangement of 36 boron atoms in a flat disc with a hexagonal hole in the middle may be the preferred building blocks for “borophene.”

Pushing the thermal limits of nanoscale SQUIDs

January 20, 2014 6:41 pm | News | Comments

Superconducting quantum interference devices (SQUIDs) are incredibly sensitive magnetic flux sensors which have been limited in their applications because of thermal challenges at ultralow temperatures. Researchers in the U.K. have succeeded in overcoming this difficulty by introducing a new type of nanoscale SQUID based on optimized proximity effect bilayers.

Researchers make a 3-D strutted framework from graphene for the first time

January 10, 2014 12:18 pm | News | Comments

A new fabrication method inspired by blown sugar art has been used to make structure in which an ultrathin graphene layer, or layers, is glued to a 3-D strutted framework. The researchers in Japan, calling this the “chemical blowing method”, overcomes the weak intersheet connections that have made this type of structure so difficult to create in the past.

Nano-inspired packaging plastic protects as well as aluminium foil

January 6, 2014 12:06 pm | News | Comments

A spin-off company from Singapore’s A*STAR research institute, has invented a new plastic film using a nano-inspired process that makes the material thinner but as effective as aluminium foil in keeping air and moisture at bay. The stretchable plastic could be an alternative for prolonging shelf-life of pharmaceuticals, food, and electronics, bridging the gap of aluminium foil and transparent oxide films.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading