Advertisement
Nanotechnology Manufacturing
Subscribe to Nanotechnology Manufacturing

The Lead

Collaboration points to improved nanomaterials

November 21, 2014 8:01 am | by Jim Barlow, Director of Science and Research Communications, Univ. of Oregon | News | Comments

A potential path to identify imperfections and improve the quality of nanomaterials for use in next-generation solar cells has emerged from a collaboration of Univ. of Oregon and industry researchers. To increase light-harvesting efficiency of solar cells beyond silicon's limit of about 29%, manufacturers have used layers of chemically synthesized semiconductor nanocrystals.

'Direct writing' of diamond patterns from graphite a potential technological leap

November 6, 2014 10:00 am | by Emil Venere, Purdue Univ. | News | Comments

What began as research into a method to...

Self-assembled membranes hint at biomedical applications

October 28, 2014 11:36 am | by David Lindley, Argonne National Laboratory | News | Comments

Techniques for self-assembling of molecules have grown increasingly sophisticated, but...

Fraunhofer develops economical process for micro energy harvesting

October 27, 2014 9:52 am | News | Comments

The trend toward energy self-sufficient probes and ever smaller mobile electronics systems...

View Sample

FREE Email Newsletter

NIST offers electronics industry two ways to snoop on self-organizing molecules

October 23, 2014 12:33 pm | News | Comments

A few short years ago, the idea of a practical manufacturing process based on getting molecules to organize themselves in useful nanoscale shapes seemed far-fetched. Recent work at NIST, Massachusetts Institute of Technology and IBM Almaden Research Center suggest this capability isn’t far off, however, by demonstrating self-assembly of thin films on a polymer template that creates precise rows just 10 nm wide.

Scientist invent new method for fabricating graphene nanoribbons

October 17, 2014 9:23 am | by Shaun Mason, UCLA | News | Comments

Graphene’s exotic properties can be tailored by cutting large sheets down to ribbons of specific lengths and edge configurations. But this “top-down” fabrication approach is not yet practical, because current lithographic techniques always produce defects. Now, scientists from the U.S. and Japan have discovered a new “bottom-up” self-assembly method for producing defect-free graphene nanoribbons with periodic zigzag-edge regions.

A simple and versatile way to build three-dimensional materials of the future

October 16, 2014 10:14 am | News | Comments

Researchers in Japan have developed a new yet simple technique called "diffusion driven layer-by-layer assembly" to construct graphene into porous 3-D structures for applications in devices such as batteries and supercapacitors. The new method borrowed a principle from polymer chemistry, known as interfacial complexation, to allow graphene oxide to form a stable composite layer with an oppositely charged polymer.

Advertisement

Scientists synthesize a two-element atomic chain inside a carbon nanotube

October 16, 2014 10:05 am | News | Comments

Researchers at Japan’s National Institute of Advanced Industrial Science and Technology have synthesized an atomic chain in which two elements, cesium and iodine, are aligned alternately inside a carbon nanotube. Analyzed using electron microscopy and spectroscopy, the invention could shed light on the adsorption mechanisms of radioactive elements.

Fast, cheap nanomanufacturing

October 6, 2014 9:19 am | by Larry Hardesty, MIT | News | Comments

Arrays of tiny conical tips that eject ionized materials are being made at the Massachusetts Institute of Technology. The technology, which harnesses electrostatic forces, has a range of promising applications, such as spinning out nanofibers for use in “smart” textiles or propulsion systems for fist-sized “nanosatellites.” The latest prototype array that generates 10 times the ion current per emitter that previous arrays did.

World’s smallest reference material is a big plus for nanotechnology

September 25, 2014 9:44 am | News | Comments

If it's true that good things come in small packages, then NIST can now make anyone working with nanoparticles very happy. The institute recently issued Reference Material (RM) 8027, the smallest known reference material ever created for validating measurements of man-made, ultrafine particles between 1 and 100 nm in size.

Low-cost, “green” transistor heralds advance in flexible electronics

September 24, 2014 10:02 am | News | Comments

As tech company LG demonstrated this summer with the unveiling of its 18-in flexible screen, the next generation of roll-up displays is tantalizingly close. Researchers are now reporting a new, inexpensive and simple way to make transparent, flexible transistors that could help bring roll-up smartphones with see-through displays and other bendable gadgets to consumers in just a few years.

New solar cells serve free lunch

September 24, 2014 9:07 am | by Poncie Rutsch, Okinawa Institute of Science and Technology | News | Comments

A common complaints about solar power is that solar panels are still too expensive. Efforts at making them more efficient or longer-lasting have been limited. A new method developed in Okinawa could solve the expense problem: A hybrid form of deposition is being used to create perovskite solar cells from a mixture of inexpensive organic and inorganic raw materials, eliminating the need for expensive crystallized silicon.

Advertisement

Startup scales up graphene production, develops biosensors and supercapacitors

September 19, 2014 10:59 am | Videos | Comments

Glenn Johnson, CEO of BlueVine Graphene Industries Inc., said many of the methodologies being utilized to produce graphene today are not easily scalable and require numerous post-processing steps to use it in functional applications. He said his company has developed a way to scale graphene production using a roll-to-roll chemical vapor deposition process.

Scientists refine formula for nanotube types

September 17, 2014 9:52 am | by Mike Williams, Rice Univ. | Videos | Comments

Many a great idea springs from talks over a cup of coffee. But it’s rare and wonderful when a revelation comes from the cup itself. Rice Univ. theoretical physicist Boris Yakobson, acting upon sudden inspiration at a meeting last year, obtained a couple of spare coffee cups from a server and a pair of scissors and proceeded to lay out—science fair-style—an idea that could have far-reaching implications for the nanotechnology industry.

Materials experts construct precise inter-nanotube junctions

September 15, 2014 12:05 pm | News | Comments

A new method for controllably constructing precise inter-nanotube junctions and structures in carbon nanotube (CNT) arrays, Northeastern Univ. researchers say, is facile and easily scal­able. It will allow them to tailor the phys­ical prop­er­ties of nan­otube net­works for use in appli­ca­tions ranging from elec­tronic devices to CNT-reinforced com­posite mate­rials found in every­thing from cars to sports equipment.

Nanotechnology to provide cleaner diesel engines

September 9, 2014 8:32 am | by Bertel Henning Jensen, Technical Univ. of Denmark | News | Comments

When it comes to diesel engine catalysts, which are responsible for cleansing exhaust fumes, platinum has unfortunately proved to be the only viable option. This has resulted in material costs alone accounting for half of the price of a diesel catalyst. Researchers in Denmark say they have developed a new way to manufacture catalysts that may result in a 25% reduction in the use of platinum.

Doped graphene nanoribbons with potential

September 9, 2014 7:40 am | News | Comments

Typically a highly conductive material, graphene becomes a semiconductor when prepared as an ultra-narrow ribbon. Recent research has now developed a new method to selectively dope graphene molecules with nitrogen atoms. By seamlessly stringing together doped and undoped graphene pieces, ”heterojunctions” are formed in the nanoribbons, allowing electric current to flow in only one direction when voltage is applied.

Advertisement

New analytical technology reveals nanomechanical surface traits

August 27, 2014 5:03 pm | by Emil Venere, Purdue Univ. | News | Comments

Researchers have discussed the merits of surface-stress influence on mechanical properties for decades. Now, a new research platform, called nanomechanical Raman spectroscopy and developed at Purdue Univ., uses a laser to measure the "nanomechanical" properties of tiny structures undergoing stress and heating.

DARPA project aims to make nanoscale benefits life-sized

August 27, 2014 11:55 am | News | Comments

Many common materials exhibit different and potentially useful characteristics when fabricated at extremely small scales. But lack of knowledge of how to retain nanoscale properties in materials at larger scales and lack of assembly capabilities for items have prevented us from taking advantage of these nanoscale characteristics. DARPA has created the Atoms to Product (A2P) program to help overcome these challenges.

Tiny graphene drum could form future quantum memory

August 26, 2014 4:03 pm | Videos | Comments

Scientists in The Netherlands have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential to be used as sensors in devices such as mobile phones. Using their unique mechanical properties, these drums could also act as memory chips in a quantum computer.

Custom-made nanotubes

August 13, 2014 12:39 pm | News | Comments

Researchers in Europe have succeeded for the first time in growing single-walled carbon nanotubes with only a single, prespecified structure. The nanotubes thereby have identical electronic properties. The decisive trick was producing the carbon nanotube from custom-made organic precursor molecules.

Eco-friendly pre-fab nanoparticles could advance nanomanufacturing

August 13, 2014 11:21 am | by Janet Lathrop, UMass Amherst | News | Comments

A team of materials chemists, polymer scientists, device physicists and others at the Univ. of Massachusetts Amherst report a breakthrough technique for controlling molecular assembly of nanoparticles over multiple length scales that should allow faster, cheaper, more ecologically friendly manufacture of organic photovoltaics and other electronic devices.

Synthesis of structurally pure carbon nanotubes using molecular seeds

August 7, 2014 9:34 am | News | Comments

For the first time, researchers have succeeded in "growing" single-wall carbon nanotubes (CNT) with a single predefined structure, and hence with identical electronic properties. The method involved self-assembly of tailor-made organic precursor molecules on a platinum surface. In the future, carbon nanotubes of this kind may be used in ultra-sensitive light detectors and ultra-small transistors.

Driving Back Defects

August 6, 2014 10:13 am | by Paul Livingstone | Articles | Comments

Traditional lithography is based on a simple principle: Oil and water don’t mix. The method, first developed by an actor in Bavaria in 1796, used a smooth piece of limestone on which an oil-based image was drawn and overlayed with gum arabic in water. During printing, the ink was attracted to the oil, and was repelled by the gum.

Thin diamond films provide new material for micro-machines

August 5, 2014 6:12 pm | by Jared Sagoff, Argonne National Laboratory | News | Comments

Most MEMS are made primarily of silicon for reasons of convenience, but they wear out quickly due to friction and they are not biocompatible. Researchers at Argonne National Laboratory and a handful of other institutions around the world have directed their focus on ultrananocrystalline diamond (UNCD), which are smooth and wear-resistant diamond thin films. Recent work opens the door to using diamond for fabricating advanced MEMS devices.

Simple, low cost laser technique improves nanomaterials

July 22, 2014 1:28 pm | News | Comments

By “drawing” micropatterns on nanomaterials using a focused laser beam, scientists in Singapore have modifed properties of nanomaterials for effective photonic and optoelectronic applications. Their method increased electrical conductivity and photoconductivity of the modified molybdenum disulfide material by more than 10 times and about five times respectively.

Researchers develop simple procedure to obtain nanosized graphene

July 16, 2014 9:34 am | Videos | Comments

A team including scientists from Spain and from IBM Research in Switzerland have published work which describes an extremely simple method to obtain high quality nanographenes from easily available organic compounds. This method is based on the reactivity of a group of molecules named arynes, which can act as "molecular glue" to paste graphene fragments together.

Swiss cross made from just 20 single atoms

July 15, 2014 9:14 am | News | Comments

Together with teams from Finland and Japan, physicists from the Univ. of Basel in Switzerland were able to place 20 single bromine atoms on a fully insulated surface at room temperature to form the smallest “Swiss cross” ever created. The effort is a breakthrough because the fabrication of artificial structures on an insulator at room temperature is difficult. It is largest number of atomic manipulations ever achieved at room temperature.

New technology offers precise control of molecular self-assembly

July 10, 2014 5:09 pm | News | Comments

A research group based in Japan has developed a new methodology that can easily and precisely control the timing, structure, and functions in the self-assembly of pi-conjugated molecules, which are an important enabling building block in the field of organic electronics. One of the key steps is keeping these molecules in a liquid form at room temperature.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading