Advertisement
Materials Manufacturing
Subscribe to Materials Manufacturing

The Lead

SUNY college may partner with Solar Frontier on thin-film R&D, production

April 23, 2014 9:33 am | News | Comments

Solar Frontier and the State Univ. of New York College of Nanoscale Science and Engineering have signed a memorandum of understanding to conduct a technical and economic feasibility study for potential joint R&D and manufacturing of CIS thin-film modules in Buffalo, New York. This move is part of Solar Frontier’s plans to establish production bases for its proprietary technology outside of Japan, the company’s home market.

New material coating technology mimics nature’s Lotus effect

April 22, 2014 8:34 am | News | Comments

Of late, engineers have been paying more and more...

Gecko-like adhesives now useful for real world surfaces

April 21, 2014 3:12 pm | News | Comments

The ability to stick objects to a wide range of...

New research method produces large volumes of high-quality graphene

April 21, 2014 8:45 am | News | Comments

Researchers in Ireland have used a simple method...

View Sample

FREE Email Newsletter

Making new materials an atomic layer at a time

April 17, 2014 9:36 am | News | Comments

Researchers in Pennsylvania and Texas have shown the ability to grow high quality, single-layer materials one on top of the other using chemical vapor deposition. This highly scalable technique, often used in the semiconductor industry, can produce materials with unique properties that could be applied to solar cells, ultracapacitors for energy storage, or advanced transistors for energy efficient electronics, among many other applications.

Relieving electric vehicle range anxiety with improved batteries

April 15, 2014 3:29 pm | News | Comments

The chemistry of lithium-ion batteries limits how much energy they can store, and one promising solution is the lithium-sulfur battery, which can hold as much as four times more energy per mass. However, problematic polysulfides usually cause lithium-sulfur batteries to fail after a few charges. Researchers at Pacific Northwest National Laboratory, however, have developed a new powdery nanomaterial that could solve the issue.

Engineers develop new materials for hydrogen storage

April 15, 2014 9:43 am | News | Comments

Researchers in California have created, for the first time, compounds made from mixtures of calcium hexaboride, strontium and barium hexaboride. They also demonstrated that these ceramic materials could be manufactured using a simple, low-cost manufacturing method known as combustion synthesis.

Advertisement

A first principles approach to creating new materials

April 9, 2014 3:02 pm | by Marlene Cimons, National Science Foundation | News | Comments

Traditionally, scientists discover new materials, and then probe them to understand their properties. Theoretical materials physicist Craig Fennie does it in reverse. He creates new materials by employing a "first principles" approach based on quantum mechanics, in which he builds materials atom by atom, starting with mathematical models, in order to gain the needed physical properties.

A new twist for better steel

April 9, 2014 9:23 am | News | Comments

In steel making, two desirable qualities, strength and ductility, tend to be at odds: Stronger steel is less ductile, and more ductile steel is not as strong. Engineers at Brown Univ., three Chinese universities, and the Chinese Academy of Sciences have shown that when cylinders of steel are twisted, their strength is improved without sacrificing ductility.

New findings to help extend high efficiency solar cells’ lifetime

April 7, 2014 1:27 pm | by Kathleen Estes, Okinawa Institute of Science and Technology | News | Comments

Solid-state dye-sensitized solar cells have shown their potential in achieving high efficiency with a low cost of fabrication. Degradation of these cells shortens lifespan dramatically, however, and the causes of this are not well understood. After a detailed analysis, researchers in Okinawa have determined which material in the cells was degrading, and why.

Trees go high-tech: Process turns cellulose into energy storage devices

April 7, 2014 1:19 pm | News | Comments

Chemists have found that cellulose, the most abundant organic polymer on Earth, can be heated in a furnace in the presence of ammonia and turned into the building blocks for supercapacitors. The new process produces nitrogen-doped, nanoporous carbon membranes, which act as the electrodes of a supercapacitor. The only byproduct is methane, which could be used immediately as a fuel or for other purposes.

New level of control gained for promising class of semiconductor

April 1, 2014 3:33 pm | News | Comments

Germanium monosulfide (GeS) is emerging as one of the most important class "IV–VI" semiconductor materials with potential in optoelectronics applications for telecommunications and computing. Adding a new element of control to preparation of this material, researchers in China have found a convenient way to selectively prepare GeS nanostructures, including nanosheets and nanowires, that are more active than their bulk counterparts

Advertisement

Heat-conducting polymer cools hot electronic devices at 200 C

March 31, 2014 7:27 am | by John Toon, Georgia Institute of Technology | News | Comments

Polymer materials are usually thermal insulators. But by harnessing an electropolymerization process to produce aligned arrays of polymer nanofibers, researchers have developed a thermal interface material able to conduct heat 20 times better than the original polymer. The modified material can reliably operate at temperatures of up to 200 C.

Diamonds are an oil’s best friend

March 28, 2014 7:47 am | by Mike Williams, Rice Univ. | News | Comments

Scientists at Rice Univ. have mixed very low concentrations of diamond nanoparticles with mineral oil to test the nanofluid’s thermal conductivity and how temperature would affect its viscosity. They found it to be much better than nanofluids that contain higher amounts of oxide, nitride or carbide ceramics, metals, semiconductors, carbon nanotubes and other composite materials. In short, it is the best nanofluid for heat transfer.

Ultra-thin light detectors combine two very different technologies

March 27, 2014 9:36 am | News | Comments

Until now, it has been hard to couple light generation into layered semiconductor systems. Scientists in Austria have recently solved this problem using metamaterials, which are able to manipulate light in the terahertz range due to their special microscopic structure. This represents the first combination of metamaterials and quantum cascade structures.  

Thermoelectric capacity doubled with new thin film material

March 26, 2014 9:24 am | News | Comments

Because of their unique qualities, thermoelectric materials can convert waste heat into electricity. Researchers in the Netherlands have managed to significantly improve the efficiency of a common thermoelectric material by adjusting the fabrication conditions. The material may eventually be used to, for example, put the heat issued from a factory chimney or car exhaust pipe to good use.

Scientists discover material that can be solar cell by day, light panel by night

March 25, 2014 7:49 am | News | Comments

In what was almost a chance discovery, researchers in Singapore have developed a solar cell material which can emit light in addition to converting light to electricity. This solar cell is developed from perovskite, a promising material that could hold the key to creating high-efficiency, inexpensive solar cells. The new cells not only glow when electricity passes through them, they can also be customized to emit different colours.

Advertisement

Mother-of-pearl inspires super-strong material

March 25, 2014 7:43 am | News | Comments

Whether traditional or derived from high technology, ceramics all have the same flaw: they are fragile. But now researchers in France have recently presented a new ceramic material inspired by mother-of-pearl from the small single-shelled marine mollusk abalone. This material, almost ten times stronger than a conventional ceramic, is the result of an innovative manufacturing process that includes a freezing step.

Researchers grow carbon nanofibers using ambient air, without toxic ammonia

March 24, 2014 9:39 am | News | Comments

Vertically aligned carbon nanofibers (VACNFs) are a commonly manufactured material, but conventional techniques for creating them have relied on the use of ammonia gas, which is toxic. Though it not costly, it is also not free, either. Researchers in North Carolina have demonstrated that VACNFs can be manufactured using ambient air, making the manufacturing process safer and less expensive.

New use for an old troublemaker

March 24, 2014 9:04 am | News | Comments

An unwanted byproduct from a bygone method of glass production, the crystal devitrite could find a new use as an optical diffuser in medical laser treatments, communications systems and household lighting. For years, the properties of this material were not studied because it was considered as just a troublemaker in the glass-making process and needed to be eliminated.

Lightweight construction materials achieve high stability

March 21, 2014 2:07 pm | News | Comments

Inspired by the framework structure of bones and the shell structure of bees’ honeycombs, researchers in Germany have developed microstructured lightweight construction materials of extremely high stability. Although its density is below that of water, the material’s stability relative to its weight exceeds that of massive materials, such as high-performance steel or aluminum. It was created using 3-D laser writing.

Rapid materials testing in 3-D

March 20, 2014 12:31 pm | News | Comments

Ultrasound is a proven technology in components testing, but until now evaluating the data has always been quite a time-consuming process. Researchers in Germany have recently optimized an ultrasonic testing solution that can test materials quickly and reliably with the help of 3-D images produced directly from test signals. The solution is analogous to medical computed tomography.

Graphene-copper sandwich may improve, shrink electronics

March 12, 2014 2:00 pm | by Sean Nealon, Univ. of Riverside, Calif. | News | Comments

Researchers have discovered that creating a graphene-copper-graphene “sandwich” strongly enhances the heat conducting properties of copper, a discovery that could further help in the downscaling of electronics.

LED lamps: Less energy, more light with gallium nitride

March 7, 2014 12:55 pm | News | Comments

Light-emitting diodes (LEDs) are durable and save energy. Now, researchers have found a way to make LED lamps even more compact while supplying more light than commercially available models. The key to this advance are a new type of transistors made of the semiconductor material gallium nitride.

Programmable material: Sheet metal that never rattles

March 5, 2014 4:52 pm | News | Comments

Researchers from Empa and ETH Zurich have succeeded in producing a prototype of a vibration-damping material that could change the world of mechanics. The material of the future is not only able to damp vibrations completely; it can also specifically conduct certain frequencies further.

Researchers develop intrinsically unstacked double-layer graphene

March 4, 2014 3:35 pm | News | Comments

The huge surface area and strong interactions between graphene layers causes facile “stacking” behavior that dramatically reduces available surface area, inhibiting graphene electronic properties. Researchers have tried to prevent this with carbon black, but this also carries undesirable property changes. By introducing protuberances on graphene during synthesis, researchers in China have found a solution to the stacking problem.

New special air filter blocks small particles from getting inside cars

February 25, 2014 9:31 am | News | Comments

While taking in the scenery during long road trips, passengers also may be taking in potentially harmful ultrafine particles (UFPs) that come into the car through outdoor air vents. Closing the vents reduces UFPs, but causes exhaled carbon dioxide to build up. Now, scientists have developed a high-efficiency cabin air filter that could reduce UFP exposure by 93% and keep carbon dioxide levels low.

New, improved photocatalytic materials developed in Japan

February 21, 2014 10:50 am | News | Comments

The scarcity of ultraviolet (UV) light in sunlight has held back the usefulness of titanium dioxide-based photocatalysts. Through the application of nanotechnology, researchers in Japan have recently succeeded in the development of better titanium dioxide-based material that can be activated by visible light. The solution lies in an array of nanoparticles that “simulate” the photoexcitation of UV light.

New technology reconstructs smallest features of human fingerprints

February 12, 2014 8:42 am | News | Comments

An international partnerships is aiming to develop robust fingerprint sensors with resolution beyond today’s 500 dpi international standards, the minimum required by the U.S. Federal Bureau of Investigation. The new platform uses vertical piezoelectric nanowire matrices designed using multiphysics modeling software.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading