Advertisement
Manufacturing Methods
Subscribe to Manufacturing Methods

The Lead

NIST offers electronics industry two ways to snoop on self-organizing molecules

October 23, 2014 12:33 pm | News | Comments

A few short years ago, the idea of a practical manufacturing process based on getting molecules to organize themselves in useful nanoscale shapes seemed far-fetched. Recent work at NIST, Massachusetts Institute of Technology and IBM Almaden Research Center suggest this capability isn’t far off, however, by demonstrating self-assembly of thin films on a polymer template that creates precise rows just 10 nm wide.

New 3-D printing algorithms speed production, reduce waste

October 22, 2014 7:51 am | by Emil Venere, Purdue Univ. | News | Comments

New software algorithms have been shown to significantly reduce the time and...

Starfish shell-mimicking crystals could advance 3-D printing pills

October 21, 2014 8:19 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

In a design that mimics a hard-to-duplicate texture of starfish shells, Univ. of Michigan...

Goldilocks principle wrong for particle assembly

October 20, 2014 9:32 am | by New York Univ. | News | Comments

Microscopic particles that bind under low temperatures will melt as temperatures rise to...

View Sample

FREE Email Newsletter

Keeping an Eye on Quality

October 16, 2014 2:57 pm | by Olympus | Articles | Comments

A leader in the field of minimally invasive surgery device development operates state-of-the-art R&D and manufacturing facilities—facilities that depend on today’s most advanced quality assurance/quality testing procedures. To ensure all equipment leaving its production facilities meets the highest performance and reliability standards, the company relies on a QA/QC system made possible by industrial microscope and analyzer solutions.

Research reveals unique capabilities of 3-D printing

October 16, 2014 8:51 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Researchers at Oak Ridge National Laboratory have demonstrated an additive manufacturing method to control the structure and properties of metal components with precision unmatched by conventional manufacturing processes. The researchers demonstrated the method using an ARCAM electron beam melting system (EBM), in which successive layers of a metal powder are fused together by an electron beam into a 3-D product.

Electric vehicle technology packs more punch in smaller package

October 15, 2014 8:46 am | by Ron Walli, Oak Ridge National Laboratory Communications | News | Comments

Using 3-D printing and novel semiconductors, researchers at Oak Ridge National Laboratory have created a power inverter that could make electric vehicles lighter, more powerful and more efficient. At the core of this development is wide bandgap material made of silicon carbide with qualities superior to standard semiconductor materials.

Advertisement

Creating nanostructures using simple stamps

October 2, 2014 1:31 pm | News | Comments

Nanostructures of virtually any possible shape can now be made using a combination of techniques developed to exploit the unique properties of so-called perovskites. The group based in the Netherlands, developed a pulsed laser deposition technique to create patterns in ultra thin layers, one atomic layer at a time. The perovskites’ crystal structure is undamaged by this soft lithography technique, maintaining electrical conductivity.

The Digital Lab for Manufacturing

September 18, 2014 2:32 pm | Events

In February 2014, President Obama called for a consortium of innovators to transform American industry through digital manufacturing. For this, the Digital Lab for Manufacturing was created. Learn how integrating design, development and manufacturing cuts costs.

Novel capability enables first test of real turbine engine conditions

September 17, 2014 7:46 am | by Tona Kunz, Argonne National Laboratory | News | Comments

Manufactures of turbine engines for airplanes, automobiles and electric generation plants could expedite the development of more durable, energy-efficient turbine blades thanks to a partnership between Argonne National Laboratory, the German Aerospace Center and the universities of Central Florida and Cleveland State. The ability to operate turbine blades at higher temperatures improves efficiency and reduces energy costs.

Want to print your own cell phone microscope for pennies?

September 16, 2014 8:01 am | by Susan Bauer, PNNL | Videos | Comments

At one o'clock in the morning, layers of warm plastic are deposited on the platform of the 3-D printer that sits on scientist Rebecca Erikson's desk. A small plastic housing, designed to fit over the end of a cell phone, begins to take shape. Pulling it from the printer, Erikson quickly pops in a tiny glass bead and checks the magnification.

Yale journal explores advances in sustainable manufacturing

August 27, 2014 8:33 am | News | Comments

Life cycle engineering connects the engineers who grapple with the efficiencies of production processes, machine design, and process chains with the industrial ecologists who develop more over-arching methods of environmental assessment. In a recent issue of the Journal of Industrial Ecology, experts explore the latest research on sustainable manufacturing and how life cycle engineering is being used to reduce environmental impact.

Advertisement

Researchers use 3-D printers to create custom medical implants

August 21, 2014 10:18 am | by Dave Guerin, Louisiana Tech Univ. | News | Comments

A team of researchers at Louisiana Tech Univ. has developed an innovative method for using affordable, consumer-grade 3-D printers and materials to fabricate custom medical implants that can contain antibacterial and chemotherapeutic compounds for targeted drug delivery.

Exploring 3-D printing to make organs for transplants

August 21, 2014 9:46 am | by American Chemical Society | News | Comments

Printing whole new organs for transplants sounds like something out of a sci-fi movie, but the real-life budding technology could one day make actual kidneys, livers, hearts and other organs for patients who desperately need them. In Langmuir, scientists are reporting new understanding about the dynamics of 3-D bioprinting that takes them a step closer to realizing their goal of making working tissues and organs on-demand.

Researchers create engineered energy-absorbing material

August 20, 2014 9:36 am | by James A Bono, LLNL | News | Comments

Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. To overcome limitations, a team from Lawrence Livermore National Laboratory has found a way to design and fabricate, at the microscale, new cushioning materials with a broad range of programmable properties and behaviors that exceed the limitations of the material's composition through 3-D printing.

3-D Printing Builds Up Architecture

August 13, 2014 1:53 pm | by Lindsay Hock, Managing Editor | Articles | Comments

In May 2014, a private company in China, WinSun, printed 10 full-size houses using 3-D printers in the space of a day. The process utilized quick-drying cement and construction water to build the walls layer-by-layer. The company used a system of four 10-m-by-6.6-m-high printers with multi-directional sprays to create the houses.

3-D Printing for Blood Recycling, Medical Developments

August 13, 2014 10:15 am | by Lindsay Hock, Managing Editor | Stratasys, Ltd. | Articles | Comments

Imagine your religious beliefs laid between you and your life. This is what happened in mid-April to Julie Penoyer, a 50-year-old U.K. heart patient and Jahovah’s Witness. Following her religious beliefs, her request when undergoing open-heart surgery was to not receive donated blood products.

Advertisement

New material structures bend like microscopic hair

August 6, 2014 10:31 am | by Jennifer Chu, MIT News Office | Videos | Comments

MIT engineers have fabricated a new elastic material coated with microscopic, hairlike structures that tilt in response to a magnetic field. Depending on the field’s orientation, the microhairs can tilt to form a path through which fluid can flow; the material can even direct water upward, against gravity. Researchers say structures may be used in windows to wick away moisture.

Driving Back Defects

August 6, 2014 10:13 am | by Paul Livingstone | Articles | Comments

Traditional lithography is based on a simple principle: Oil and water don’t mix. The method, first developed by an actor in Bavaria in 1796, used a smooth piece of limestone on which an oil-based image was drawn and overlayed with gum arabic in water. During printing, the ink was attracted to the oil, and was repelled by the gum.

Scanning Products into 3-D

August 6, 2014 9:47 am | by Lindsay Hock, Managing Editor | Articles | Comments

The global 3-D scanning market is estimated to grow from $2.06 billion in 2013 to $4.08 billion by 2018, at a CAGR of 14.6% from 2013 to 2018, according to a MarketsandMarkets report. Recent trends in the industry show 3-D scanning as improving, with a huge demand. And 3-D scanning with services like reverse engineering, rapid prototyping and quality inspection, makes it suitable for most verticals.

New approach helps form non-equilibrium structures

July 25, 2014 6:49 am | News | Comments

Scientists at Northwestern Univ. have developed a new technique for creating non-equilibrium systems, which experience constant changes in energy and phases, such as temperature fluctuations, freezing and melting, or movement. The method, which involves injecting energy through oscillations to force particles to self-assemble under non-equilibrium conditions, should help us understand the fundamentals of this mysterious topic.

From stronger Kevlar to better biology

July 14, 2014 9:17 am | by Angela Herring, Northeastern Univ. | News | Comments

Mar­ilyn Minus, a materials expert and assis­tant pro­fessor at Northeastern Univ., is exploring directed self-assembly methods using carbon nanotubes and polymer solutions. So far, she’s used the approach to develop a polymer com­posite mate­rial that is stronger than Kevlar yet much lighter and less expen­sive. Minus is now expanding this work to incor­po­rate more polymer classes: flame retar­dant mate­rials and bio­log­ical molecules.

New technology offers precise control of molecular self-assembly

July 10, 2014 5:09 pm | News | Comments

A research group based in Japan has developed a new methodology that can easily and precisely control the timing, structure, and functions in the self-assembly of pi-conjugated molecules, which are an important enabling building block in the field of organic electronics. One of the key steps is keeping these molecules in a liquid form at room temperature.

New method detects infrared energy using a nanoporous photodetector

July 1, 2014 10:09 am | News | Comments

Experiments aimed at devising new types of photodetectors have been triggered by the increasing use of optoelectronic devices. Researchers in China have proposed a new type of infrared photodetector made from zinc oxide and silicon. Its nanoporous nature, synthesized by a simple sol-gel method, allows it to be responsive to infrared wavelengths.

Carbon-fiber epoxy honeycombs mimic material performance of balsa wood

June 25, 2014 4:06 pm | by Paul Karoff, Harvard Univ. | News | Comments

In wind farms across North America and Europe, sleek turbines equipped with state-of-the-art technology convert wind energy into electric power. But tucked inside the blades of these feats of modern engineering is a decidedly low-tech core material: balsa wood.

Researchers develop new ultra-light, ultra-stiff 3-D printed materials

June 19, 2014 4:11 pm | by Kenneth Ma, LLNL | News | Comments

Imagine a material with the same weight and density as aerogel—a material so light it's called “frozen smoke”—but with 10,000 times more stiffness. This material could have a profound impact on the aerospace and automotive industries as well as other applications where lightweight, high-stiffness and high-strength materials are needed.

New manufacturing methods needed for “soft” machines, robots

June 19, 2014 7:52 am | by Emil Venere, Purdue Univ. | News | Comments

Researchers have developed a technique that might be used to produce "soft machines" made of elastic materials and liquid metals for potential applications in robotics, medical devices and consumer electronics. Such an elastic technology could make possible robots that have sensory skin and stretchable garments that people might wear to interact with computers or for therapeutic purposes.

Researchers develop efficient approach to manufacture 3-D metal parts

June 16, 2014 2:12 pm | by Kenneth Ma, LLNL | News | Comments

Lawrence Livermore National Laboratory researchers have developed a new and more efficient approach to a challenging problem in additive manufacturing—using selective laser melting, namely, the selection of appropriate process parameters that result in parts with desired properties.

R&D Scene: 3-D Printing Ushers In New Era of Manufacturing

June 9, 2014 1:42 pm | by Lindsay Hock, Managing Editor | Videos | Comments

Thirty years have passed since 3-D printers first appeared, but only recently have they hinted at a new era of manufacturing. The first working 3-D printer was created in 1984 by Chuck Hull of 3D Systems Corp. This early device, based on stereolithography, gave way to the first truly practical 3-D printing technology patented by the Massachusetts Institute of Technology in 1993.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading