Advertisement
Lasers in Manufacturing
Subscribe to Lasers in Manufacturing

The Lead

Focused energy of lasers breaks microscopic adhesion

July 2, 2015 8:59 am | by NSF | News | Comments

When small objects get stuck to you, a vacuum or lint roller can help remove them. But small, clingy objects are a serious problem in the growing field of nanomanufacturing. So what do engineers use when they have to build circuits that will fit on a piece of confetti? Researchers supported by the National Science Foundation (NSF) have a solution: lasers.

Laser technique for self-assembly of nanostructures

May 19, 2015 8:38 am | by Swinburne Univ. of Technology | News | Comments

Researchers from Swinburne Univ. of Technology and the Univ. of Science and Technology of China...

New method to generate arbitrary optical pulses

January 21, 2015 11:43 am | by Univ. of Southampton | News | Comments

Scientists from the Univ. of Southampton have developed a new technique to generate more...

Laser-patterning technique turns metals into supermaterials

January 20, 2015 11:14 am | by American Institute of Physics | News | Comments

By zapping ordinary metals with femtosecond laser pulses researchers from the Univ. of Rochester...

View Sample

FREE Email Newsletter

Rice-sized laser bodes well for quantum computing

January 15, 2015 2:16 pm | by Catherine Zandonella, Princeton Univ. | News | Comments

Princeton Univ. researchers have built a rice grain-sized laser powered by single electrons tunneling through artificial atoms known as quantum dots. The tiny microwave laser, or "maser," is a demonstration of the fundamental interactions between light and moving electrons.

3-D displays without 3-D glasses

January 15, 2015 10:06 am | by Vienna Univ. of Technology | News | Comments

Public screenings have become an important part of major sports events. In the future, we will be able to enjoy them in 3-D, thanks to a new invention from Austrian scientists. A sophisticated laser system sends laser beams into different directions. Therefore, different pictures are visible from different angles. The angular resolution is so fine that the left eye is presented a different picture than the right one, creating a 3-D effect.

Spiral laser beam creates quantum whirlpool

November 17, 2014 10:24 am | by Australian National Univ. | News | Comments

Physicists at Australian National Univ. have engineered a spiral laser beam and used it to create a whirlpool of hybrid light-matter particles called polaritons. The ability to control polariton flows in this way could aid the development of completely novel technology to link conventional electronics with new laser and fiber-based technologies.

Advertisement

Dazzlingly sharp images on curved screens

October 27, 2014 12:54 pm | News | Comments

Projecting images on curved screens poses a dilemma. The sharper the image, the darker it is, even when using lasers and scanning mirrors. A novel optical approach involving the use of an array of microprojectors now brings brightness and sharpness together for the first time on screens of any curvature. It also allows an increase in projection rates by about 10,000 times.

Turning loss to gain

October 27, 2014 7:42 am | by Steven Schultz, Princeton Univ. | News | Comments

Lasers are so deeply integrated into modern technology that their basic operations would seem well understood. CD players, medical diagnostics and military surveillance all depend on lasers. Re-examining longstanding beliefs about the physics of these devices, Princeton Univ. engineers have now shown that carefully restricting the delivery of power to certain areas within a laser could boost its output by many orders of magnitude.

What a “Star Wars” laser bullet really looks like

October 22, 2014 2:50 pm | News | Comments

Action-packed science-fiction movies often feature colorful laser bolts. But what would a real laser missile look like during flight, if we could only make it out? How would it illuminate its surroundings? The answers lie in a film made by researchers in Poland who have captured the passage of an ultrashort laser pulse through the air.

Ultrafast remote switching of light emission

October 1, 2014 9:15 am | News | Comments

Researchers in the Netherlands can now, for the first time, remotely control a miniature light source at timescales of 200 trillionths of a second. Physicists have developed a way of remotely controlling the nanoscale light sources at an extremely short timescale. These light sources are needed to be able to transmit quantum information.

Lockheed Martin conducts flight tests of aircraft laser turret

September 16, 2014 11:35 am | News | Comments

An interdisciplinary development team that includes Lockheed Martin, the Air Force Research Laboratory and the Univ. of Notre Dame has demonstrated the airworthiness of a new beam control turret being developed for DARPA to give 360-degree coverage for high-energy laser weapons operating on military aircraft. An aircraft equipped with the laser has already conducted eight test flights in Michigan.

Advertisement

Laser device may end pin pricks for diabetics

August 22, 2014 8:07 am | by John Sullivan, Office of Engineering Communications, Princeton Univ. | News | Comments

Princeton Univ. researchers have developed a way to use a laser to measure people's blood sugar, and, with more work to shrink the laser system to a portable size, the technique could allow diabetics to check their condition without pricking themselves to draw blood.

Yale’s cool molecules are a hot item

August 21, 2014 10:03 am | by Jim Shelton, Yale Univ. | News | Comments

It’s official. Yale Univ. physicists have chilled the world’s coolest molecules. The tiny titans in question are bits of strontium monofluoride, dropped to 2.5 thousandths of a degree above absolute zero through a laser cooling and isolating process called magneto-optical trapping. They are the coldest molecules ever achieved through direct cooling, and they represent a physics milestone.

Laser “lightning rods” channel electricity through thin air

August 19, 2014 8:49 am | News | Comments

By zapping the air with a pair of powerful laser bursts, researchers at the Univ. of Arizona have created highly focused pathways that can channel electricity through the atmosphere. The new technique can potentially direct an electrical discharge up to 10 m away or more, shattering previous distance records for transmitting electricity through air. It also raises the intriguing possibility of one day channeling lightning with laser power.

A transistor-like amplifier for single photons

July 28, 2014 11:19 am | by Olivia Meyer-Streng, Max Planck Institute | News | Comments

With the help of ultracold quantum gas, physicists have achieved a 20-fold amplification of single-photon signals, a step that could aid all-optical data processing efforts. The breakthrough was made with the invention of a new type of optical transistor build from a cloud of rubidium atoms, held just above absolute zero, that is transparent to certain wavelengths of light.

First direct-diode laser bright enough to cut, weld metal

July 23, 2014 9:43 am | by Rob Matheson, MIT News Office | News | Comments

MIT Lincoln Laboratory spinout TeraDiode is commercializing a multi-kilowatt diode laser system that’s bright enough to cut and weld through a half-inch of steel, and at greater efficiencies than today’s industrial lasers. The new system is based on a wavelength beam-combining laser diode design that won an R&D 100 Award in 2012. It combines multiple beams into a single output ray, allowing for a power boost without efficiency loss.

Advertisement

Researchers develop efficient approach to manufacture 3-D metal parts

June 16, 2014 2:12 pm | by Kenneth Ma, LLNL | News | Comments

Lawrence Livermore National Laboratory researchers have developed a new and more efficient approach to a challenging problem in additive manufacturing—using selective laser melting, namely, the selection of appropriate process parameters that result in parts with desired properties.

Tiny laser-powered sensor-on-a-chip tests chemical composition of liquids

June 11, 2014 7:51 am | News | Comments

Simple solid-state lasers consist of only one material. But quantum cascade lasers are made of a perfectly optimized layer system of different materials so the wavelength of the laser can be tuned. Now a method has been developed in Austria to create a laser and a detector at the same time, on one single chip, in such a way that the wavelength of the laser perfectly matches the wavelength to which the detector is sensitive.

A new way to make laser-like beams using 250x less power

June 6, 2014 9:03 am | News | Comments

With precarious particles called polaritons that straddle the worlds of light and matter, Univ. of Michigan researchers have demonstrated a new, practical and potentially more efficient way to make a coherent laser-like beam. They have made what's believed to be the first polariton laser that is fueled by electrical current as opposed to light, and also works at room temperature, rather than way below zero.

Team demonstrates continuous terahertz sources at room temperature

June 5, 2014 11:47 am | News | Comments

The potential of terahertz waves has yet to be reached because they are difficult to generate and manipulate. Current sources are large devices that require complex vacuum, lasers and cooling systems. A Northwestern Univ. team is the first to produce terahertz radiation in a simplified system. Their room-temperature, compact, continuous terahertz radiation source is six times more efficient than previous systems.

New laser sensing technology could support self-driving cars, smartphone tech

May 29, 2014 11:50 am | News | Comments

A new twist on 3-D imaging technology could one day enable your self-driving car to spot a child in the street half a block away or play “virtual tennis” on your driveway. The new system, developed by researchers at the Univ. of California, Berkeley, can remotely sense objects across distances as long as 30 feet, 10 times farther than what could be done with comparable current low-power laser systems.

Laser system mimics sunlight to test solar cell efficiency

May 28, 2014 10:34 am | News | Comments

Researchers at NIST have developed a laser-based instrument that generates artificial sunlight to help test solar cell properties and find ways to boost their efficiency. The novel NIST system simulates sunlight well across a broad spectrum of visible to infrared light. More flexible than conventional solar simulators, the laser instrument can be focused down to a small beam spot and shaped to match any desired spectral profile.

Study: Perovskite solar cells can double as lasers

March 28, 2014 10:50 am | News | Comments

New research on perovskite-based solar cells pioneered in the U.K. suggests that they can double up as a laser as well as photovoltaic device. By sandwiching a thin layer of the lead halide perovskite between two mirrors, the Univ. of Cambridge team produced an optically driven laser which proves these cells “show very efficient luminescence”, with up to 70% of absorbed light re-emitted.

Micro systems with big commercial potential featured in SPIE journal

March 26, 2014 9:28 am | News | Comments

Commercial demand is driving high-tech research and development in micro-optoelectromechanical systems (MOEMS) for diverse applications such as space exploration, wireless systems, and healthcare. A new special section on Emerging MOEMS Technology and Applications in the current issue of the Journal of Micro/Nanolithography, MEMS, and MOEMS discusses these recent breakthrough achievements.

Materials experts create spintronic thermoelectric power generators

March 21, 2014 2:18 pm | News | Comments

Imagine a computer so efficient that it can recycle its own waste heat to produce electricity. While such an idea may seem far-fetched today, significant progress has already been made to realize these devices. Researchers at the Univ. of Utah have fabricated spintronics-based thin film devices which do just that, converting even minute waste heat into useful electricity.

Lightweight construction materials achieve high stability

March 21, 2014 2:07 pm | News | Comments

Inspired by the framework structure of bones and the shell structure of bees’ honeycombs, researchers in Germany have developed microstructured lightweight construction materials of extremely high stability. Although its density is below that of water, the material’s stability relative to its weight exceeds that of massive materials, such as high-performance steel or aluminum. It was created using 3-D laser writing.

A cavity that you want

February 25, 2014 4:53 pm | by Cory Nealon, Univ. of Buffalo | News | Comments

Associated with unhappy visits to the dentist, “cavity” means something else in the science of optics. An arrangement of mirrors that allows beams of light to circulate in closed paths, or cavities, help us build laser and optical fibers. Now, a research team pushed the concept further by developing an optical “nanocavity” that boosts the amount of light that ultrathin semiconductors absorb.

A step closer to the photonic future

February 20, 2014 3:01 am | News | Comments

Photonic devices are typically built using customized methods that make them difficult and expensive to manufacture. But at the Optical Fiber Communication Conference and Exposition next month, two new devices, a modulator and a tunable filter, are being presented that are not only as energy-efficient as some of the best devices around, but were built using standard CMOS process technology.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading