Advertisement
Surgical Devices
Subscribe to Surgical Devices
View Sample

FREE Email Newsletter

Restoring surgeons’ sense of touch during minimally invasive surgeries

October 16, 2013 10:11 am | by David Salisbury, Vanderbilt Univ. | News | Comments

During open surgery, doctors rely on their sense of touch to identify anatomical structures: a procedure they call palpation. But this practice is not possible in minimally invasive surgery where surgeons work with small, specialized tools and miniature cameras. A small, wireless capsule has been developed that can restore the sense of touch that surgeons are losing as they shift increasingly from open to minimally invasive surgery.

U.S. research team wins $1 million prize in Israel

October 15, 2013 2:32 pm | News | Comments

An Israeli nonprofit group has awarded a $1 million prize to a U.S.-based research team that is developing technology that allows paralyzed people to move things with their thoughts. BrainGate is developing a brain implant that can read brain signals and allow the paralyzed to move robotic limbs or computer cursors.

Study suggests robotic surgery complications are underreported

September 4, 2013 7:44 am | News | Comments

Despite widespread adoption by hospitals of surgical robot technology over the past decade, a “slapdash” system of reporting complications paints an unclear picture of its safety, according to Johns Hopkins researchers. When an adverse event or device malfunction occurs, hospitals are required to report these incidents. But this doesn’t always happen, the researchers say.

Advertisement

Bioresorbable scaffold wins 2013 R&D 100 Award

August 8, 2013 2:42 pm | News | Comments

Abbott’s Absorb bioresorbable vascular scaffold was named one of R&D Magazine’s 2013 top 100 technologies as part of its 51st annual R&D 100 Awards. The Absorb bioresorbable vascular scaffold, similar to a small mesh tube, is designed to open a blocked heart vessel and restore blood flow to the heart.

Robot uses steerable needles to treat brain clots

August 8, 2013 2:29 pm | News | Comments

Surgery to relieve the damaging pressure caused by hemorrhaging in the brain is a perfect job for a robot. That is the basic premise of a new image-guided surgical system under development at Vanderbilt Univ. It employs steerable needles about the size of those used for biopsies to penetrate the brain with minimal damage and suction away the blood clot that has formed.

Mice “incepted” with false memories

July 29, 2013 9:12 am | News | Comments

Researchers at the RIKEN-MIT Center for Neural Circuit Genetics and Massachusetts Institute of Technology's Picower Institute for Learning and Memory have used optogenetics techniques to implant false memories into mice, potentially illuminating the mechanisms underlying the human phenomenon of “recalling” experiences that never occurred.

"Intelligent knife" tells surgeon which tissue is cancerous

July 17, 2013 3:39 pm | News | Comments

Scientists have developed an "intelligent knife" that can tell surgeons immediately whether the tissue they are cutting is cancerous or not. In the first study to test the invention in the operating theatre, the "iKnife" diagnosed tissue samples from 91 patients with 100% accuracy, instantly providing information that normally takes up to half an hour to reveal using laboratory tests.

The story behind the 3-D-printed splint that saved an infant’s life

July 11, 2013 7:57 am | News | Comments

Half a millennium after Johannes Gutenberg printed the Bible, researchers printed a 3-D splint that saved the life of an infant born with severe tracheobronchomalacia, a birth defect that causes the airway to collapse. While similar surgeries have been performed using tissue donations and windpipes created from stem cells, this is the first time 3-D printing has been used to treat tracheobronchomalacia—at least in a human.

Advertisement

Surgeons implant bioengineered vein

June 6, 2013 2:19 pm | News | Comments

In a first-of-its-kind operation in the United States, a team of doctors at Duke University Hospital helped create a bioengineered blood vessel and transplanted it into the arm of a patient with end-stage kidney disease. The procedure was the first U.S. clinical trial to test the safety and effectiveness of the bioengineered blood vein.

From Legos to Medical Devices

June 6, 2013 11:38 am | by Lindsay Hock | Articles | Comments

In seventh grade, now 25-year-old Nikolai Begg, 2013 Lemelson-MIT Student Prize winner, was assigned a general project for English class where he had to pick a topic and write a report. That year, in life science class he took a great interest in this field, choosing to write his report on surgical robots. Able to interview surgeons using surgical robots and engineers designing them, Begg discovered an incredible field.

Doctors rescue Ohio boy by "printing" an airway tube

May 23, 2013 8:26 am | by Marilynn Marchione, AP Chief Medical Writer | News | Comments

In a medical first, doctors used plastic particles and a 3D laser printer to create an airway splint to save the life of a baby boy who used to stop breathing nearly every day. Because of a birth defect, the Kaiba Gionfriddo’s airway kept collapsing, causing his breathing to stop and often his heart, too. Doctors in Michigan had been researching artificial airway splints but had not implanted one in a patient yet.

Printable “bionic” ear melds electronics and biology

May 1, 2013 5:39 pm | News | Comments

Scientists at Princeton University used off-the-shelf printing tools to create a functional ear that can "hear" radio frequencies far beyond the range of normal human capability.  Standard tissue engineering involves seeding types of cells onto a scaffold of a polymer material called a hydrogel. But this method is not useful for complex 3D shapes, which is why researchers turned to 3D printing methods.

Robot hot among surgeons but U.S. taking fresh look

April 9, 2013 6:10 pm | by Lindsey Tanner, AP Medical Writer | News | Comments

The biggest thing in operating rooms these days is a million-dollar, multi-armed robot named da Vinci, used in nearly 400,000 surgeries in America last year. But now the high-tech helper is under scrutiny over reports of problems, including several deaths that may be linked with it, and the high cost of using the robotic system. Is it time to curb the robot enthusiasm?

Advertisement

MRI-guided laser treatment for brain tumors is promising

April 5, 2013 4:37 pm | News | Comments

The NeuroBlate Thermal Therapy System is a new device that uses a minimally invasive, magnetic resonance imaging (MRI)-guided laser system to coagulate, or heat and kill, brain tumors. The MRI basically "cooks" brain tumors in a controlled fashion to destroy them. The first-in-human study of the system finds that it appears to provide a new, safe and minimally invasive procedure for treating recurrent glioblastoma, a malignant type of brain tumor.

Telerobotic system designed to treat bladder cancer

April 3, 2013 9:18 am | by David Salisbury, Vanderbilt University | News | Comments

Although bladder cancer is the sixth most common form of cancer in the U.S. and the most expensive to treat, the basic method that doctors use to treat it hasn’t changed much in more than 70 years. A research team may soon be changing that dramatically after having developed a prototype telerobotic platform designed to be inserted through natural orifices—in this case the urethra—that can provide surgeons with a much better view, making it easier to remove tumors.

Heart repair breakthroughs replace surgeon's knife

March 24, 2013 4:27 pm | by Marilynn Marchione, AP Chief Medical Writer | News | Comments

Heart care is in the midst of a transformation. Many problems that once required sawing through the breastbone and opening up the chest for open heart surgery now can be treated with a nip, twist, or patch through a tube. These minimal procedures used to be done just to unclog arteries and correct less common heart rhythm problems. Now some patients are getting such repairs for valves, irregular heartbeats, holes in the heart and other defects—without major surgery.

RTI International’s 3D heart catheter receives innovation award

March 11, 2013 10:46 am | News | Comments

An RTI International-developed prototype catheter  that can generate live, streaming 3D ultrasound images from inside the heart has recently received a Cardiovascular Innovation Award at the 2013 Cardiovascular Research Technologies Annual Symposium. Called a live volumetric imaging intracardiac catheter, the technology has the potential to improve catheter-based heart procedures.

Stroke prevention device misses key goal in study

March 11, 2013 9:16 am | by Marilynn Marchione, AP Chief Medical Writer | News | Comments

The future is unclear for a promising heart device aimed at preventing strokes in people at high risk of them because of an irregular heartbeat. Early results from a key study of Boston Scientific Corp.'s Watchman device suggested it is safer than previous testing found, but may not be better than a drug that is used now for preventing strokes, heart-related deaths and blood clots in people with atrial fibrillation over the long term.

In-brain monitoring shows memory network

January 30, 2013 10:50 am | News | Comments

Working with patients with electrodes implanted in their brains, researchers in California and Texas have shown for the first time that areas of the brain work together at the same time to recall memories. The unique approach promises new insights into how we remember details of time and place.   

Human eye gives researchers vision for new lens technology

November 14, 2012 12:28 pm | News | Comments

Drawing upon nature for inspiration, a team of researchers has created a new artificial lens that is nearly identical to the natural lens of the human eye. Made up of thousands of nanoscale polymer layers, the lens may one day provide more natural performance in implantable lenses. It also may lead to superior ground and aerial surveillance technology.

Getting drugs under the skin

September 14, 2012 8:18 am | by Anne Trafton, MIT News Office | News | Comments

In recent years, researchers working to enhance transdermal drug delivery have focused on low-frequency ultrasound, because the high-frequency waves don’t have enough energy. However, these systems usually produce abrasions in the treated area. In a new study, engineers have combined high and low frequencies to enhance the permeability of skin to drugs, making transdermal drug delivery more efficient.

Laser-powered “needle” promises pain-free injections

September 13, 2012 7:58 am | News | Comments

Needle injections are among the least popular staples of medical care. A new laser-based system, however, that blasts microscopic jets of drugs into the skin could soon make getting a shot as painless as being hit with a puff of air. The system uses an erbium-doped yttrium aluminum garnet laser to propel a tiny, precise stream of medicine with just the right amount of force.

Could FastStitch device be the future of suture?

August 17, 2012 3:55 am | News | Comments

To cut down on postoperative problems, particularly those involving abdomenal surgery, Johns Hopkins undergraduates have invented a disposable suturing tool to guide the placement of stitches and guard against the accidental puncture of internal organs. Called FastStitch, it’s described a cross between a pliers and a hole-puncher.

The power to heal at the tips of your fingers

August 10, 2012 7:27 am | News | Comments

A international research team has mimicked and recreated the intricate properties of human fingertips using semiconductor devices. The devices, shown to be capable of responding with high precision to the stresses and strains associated with touch and finger movement, may lead to the development of advanced surgical gloves.

Healing bullets fly through tissue

July 5, 2012 7:38 am | News | Comments

Microscopically small submarines that can swim through our blood to clear out clogged arteries or destroy malignant tumors. Various micro- and nanomachines have already been developed, but a new type of machine introduced by American researchers finally has enough propulsive power to penetrate tissue and overcome cellular barriers.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading