Advertisement
Nanomedicine
Subscribe to Nanomedicine

The Lead

Nanoshuttle wear and tear: It’s the mileage, not the age

January 26, 2015 11:36 am | by Holly Evarts, Columbia Univ. | News | Comments

As nanomachine design rapidly advances, researchers are moving from wondering if the nanomachine works to how long it will work. This is an especially important question as there are so many potential applications, for instance, for medical uses, including drug delivery, early diagnosis, disease monitoring, instrumentation and surgery.

One nanoparticle, six types of medical imaging

January 21, 2015 8:22 am | by Charlotte Hsu, Univ. at Buffalo | News | Comments

It’s technology so advanced that the machine capable of using it doesn’t yet exist. Using two...

Hydrogels deliver on blood-vessel growth

January 20, 2015 7:50 am | by Mike Williams, Rice Univ. | Videos | Comments

Rice Univ. scientists have found the balance necessary to aid healing with high-tech hydrogel....

New “triggered-release” mechanism could improve drug delivery

January 16, 2015 11:58 am | by Tom Frew, International Press Officer, Univ. of Warwick | News | Comments

More efficient medical treatments could be developed thanks to a new method for triggering the...

View Sample

FREE Email Newsletter

Gold nanoparticles show promise for early detection of heart attacks

January 15, 2015 12:29 pm | by New York Univ. | News | Comments

New York Univ. Polytechnic School of Engineering professors have been collaborating with researchers from Peking Univ. on a new test strip that is demonstrating great potential for the early detection of certain heart attacks. The new colloidal gold test strip can test for cardiac troponin I (cTn-I) detection.

Solving a case of intercellular entrapment

January 9, 2015 7:51 am | by Julie Cohen, Univ. of California, Santa Barbara | News | Comments

Optogenetics, which uses light to control cellular events, is poised to become an important technology in molecular biology and beyond. The Reich Group in Univ. of California, Santa Barbara’s Dept. of Chemistry and Biochemistry has made a major contribution to this emergent field by developing a light-activated nanocarrier that transports proteins into cells and releases them on command.

New approach may lead to inhalable vaccines for influenza, pneumonia

January 8, 2015 9:29 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers at North Carolina State Univ. and the Univ. of North Carolina at Chapel Hill have uncovered a novel approach to creating inhalable vaccines using nanoparticles that shows promise for targeting lung-specific diseases, such as influenza, pneumonia and tuberculosis.

Advertisement

“Flying carpet” technique uses graphene to deliver one-two punch of anticancer drugs

January 6, 2015 10:02 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

An international team of researchers has developed a drug delivery technique that utilizes graphene strips as “flying carpets” to deliver two anticancer drugs sequentially to cancer cells, with each drug targeting the distinct part of the cell where it will be most effective. The technique was found to perform better than either drug in isolation when tested in a mouse model targeting a human lung cancer tumor.

“Glowing” new nanotechnology guides cancer surgery

January 5, 2015 3:41 pm | by David Stauth, Oregon State Univ. | News | Comments

Researchers at Oregon State Univ. have developed a new way to selectively insert compounds into cancer cells—a system that will help surgeons identify malignant tissues and then, in combination with phototherapy, kill any remaining cancer cells after a tumor is removed. It’s about as simple as, “If it glows, cut it out.” And if a few malignant cells remain, they’ll soon die.

Gelatin nanoparticles could deliver drugs to the brain

January 2, 2015 8:12 am | by Liz Ahlberg, Physical Sciences Editor, Univ. of Illinois, Urbana-Champaign | News | Comments

Stroke victims could have more time to seek treatment that could reduce harmful effects on the brain, thanks to tiny blobs of gelatin that could deliver the medication to the brain noninvasively. Univ. of Illinois researchers found that gelatin nanoparticles could be laced with medications for delivery to the brain, and that they could extend the treatment window for when a drug could be effective.

Nanotech used to engineer ACL replacements

January 2, 2015 7:50 am | by Amanda Morris, Northwestern Univ. | News | Comments

Lindsey Vonn. Derrick Rose. Tom Brady. Mickey Mantle. They have all fallen victim to the dreaded pop of the knee. Connecting the femur to the tibia, the anterior cruciate ligament (ACL) rupture is one of the most devastating injuries in sports. No other injury has sidelined more athletes for a season or even the rest of a career.

Landmark discovery in gold nanorod instability

December 18, 2014 3:14 pm | News | Comments

Researchers at Swinburne University of Technology have discovered an instability in gold nanoparticles that is critical for their application in future technology. Gold nanorods are important building blocks for future applications in solar cells, cancer therapy and optical circuitry.

Advertisement

Nanotechnology battles malaria parasites

December 10, 2014 8:04 am | News | Comments

Malaria parasites invade human red blood cells, which they bring to burst and infect others. Researchers at the University of Basel and the Swiss Tropical and Public Health Institute called nano imitations of host cell membranes have developed that deceive and trick the pathogen. This could lead to novel therapeutic and vaccine strategies against malaria and other infectious diseases.

A hybrid vehicle that delivers DNA

November 26, 2014 7:46 am | by Cory Nealon, Univ. at Buffalo | News | Comments

A new hybrid vehicle is under development. Its performance isn’t measured by the distance it travels, but rather the delivery of its cargo: vaccines that contain genetically engineered DNA to fight HIV, cancer, influenza and other maladies. The technology is a biomedical advancement that could help unleash the potential of DNA vaccines, which despite much research, have yet to make a significant impact in the treatment of major illnesses.

Nanoparticles infiltrate, kill cancer cells from within

November 24, 2014 11:06 am | by Melanie Titanic-Schefft, Univ. of Cincinnati | News | Comments

Conventional treatment seeks to eradicate cancer cells by drugs and therapy delivered from outside the cell, which may also affect (and potentially harm) nearby normal cells. In contrast to conventional cancer therapy, a Univ. of Cincinnati team has developed several novel designs for iron-oxide based nanoparticles that detect, diagnose and destroy cancer cells using photo-thermal therapy (PTT).

Biochemists build largest synthetic molecular “cage” ever

November 19, 2014 10:26 am | by Stuart Wolpert, Univ. of California, Los Angeles | News | Comments

Univ. of California, Los Angeles biochemists have created the largest-ever protein that self-assembles into a molecular “cage.” The research could lead to synthetic vaccines that protect people from the flu, HIV and other diseases. At a size hundreds of times smaller than a human cell, it also could lead to new methods of delivering pharmaceuticals inside of cells, or to the creation of new nanoscale materials.

Two sensors in one

November 18, 2014 8:10 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology chemists have developed new nanoparticles that can simultaneously perform magnetic resonance imaging (MRI) and fluorescent imaging in living animals. Such particles could help scientists to track specific molecules produced in the body, monitor a tumor’s environment, or determine whether drugs have successfully reached their targets.

Advertisement

Bio-inspired bleeding control

November 13, 2014 4:12 pm | by Sonia Fernandez, Univ. of California, Santa Barbara | News | Comments

Stanching the free flow of blood from an injury remains a holy grail of clinical medicine. Controlling blood flow is a primary concern and first line of defense for patients and medical staff in many situations, from traumatic injury to illness to surgery. If control is not established within the first few minutes of a hemorrhage, further treatment and healing are impossible.

Regulatory, scientific complexity of generic nanodrugs could delay savings for patients

November 13, 2014 8:07 am | by American Chemical Society | News | Comments

Nanomedicine is offering patients a growing arsenal of therapeutic drugs for a variety of diseases, but often at a cost of thousands of dollars a month. Generics could substantially reduce the price tag for patients—if only there were a well-defined way to make and regulate them. An article in Chemical & Engineering News (C&EN) details the challenges on the road to generic nanodrugs.

Cancer-killing nanodaisies

November 12, 2014 8:31 am | by Alastair Hadden, North Carolina State Univ. | Videos | Comments

North Carolina State Univ. researchers have developed a potential new weapon in the fight against cancer: a daisy-shaped drug carrier that’s many thousands of times smaller than the period at the end of this sentence. Once injected into the bloodstream, millions of these “nanodaisies” sneak inside cancer cells and release a cocktail of drugs to destroy them from within.

Microbubbles can improve stroke treatment

November 6, 2014 10:25 am | by Charlie Feigenoff, Univ. of Virginia | News | Comments

Univ. of Virginia biomedical engineers are building an entire technology around tiny, microscopic bubbles– a technology that has the potential to play an important role in diagnosing as well as treating disease like stroke and cancer.     

Technique turns antibodies into highly tuned nanobodies

November 3, 2014 7:53 am | by Zach Veilleux, The Rockefeller Univ. | News | Comments

Antibodies, in charge of recognizing and homing in on molecular targets, are among the most useful tools in biology and medicine. Nanobodies—antibodies’ tiny cousins—can do the same tasks, for example marking molecules for research or flagging diseased cells for destruction. But, thanks to their comparative simplicity nanobodies offer the tantalizing prospect of being much easier to produce.

Heart-therapy researchers develop nanobullet drug delivery system

October 31, 2014 9:52 am | News | Comments

Stanford Univ. School of Medicine researchers have developed a new formula for delivering the therapeutic peptide apelin to heart tissue for treatment of hypertrophy, a hereditary disease commonly attributed to sudden death in athletes. The nanoscale delivery system, which dramatically increases the peptide’s stability, shows promise for treating heart disease in humans, the researchers said.

Tiny nanopores make big impact

October 30, 2014 8:05 am | by Anne M. Stark, Lawrence Livermore National Laboraotry | News | Comments

A team led by the Lawrence Livermore National Laboratory scientists has created a new kind of ion channel consisting of short carbon nanotubes, which can be inserted into synthetic bilayers and live cell membranes to form tiny pores that transport water, protons, small ions and DNA. These carbon nanotube “porins” have significant implications for future health care and bioengineering applications.

Implantable device remotely releases therapeutic drugs, on Earth or in orbit

October 24, 2014 10:28 am | News | Comments

Houston Methodist Research Institute scientists will receive about $1.25 million from the Center for the Advancement of Science in Space to develop an implantable, nanochannel device that delivers therapeutic drugs at a rate guided by remote control. The device's effectiveness will be tested aboard the International Space Station and on Earth's surface.

Scientists to use tiny particles to fight big diseases

October 23, 2014 12:49 pm | Videos | Comments

A group of scientists in Florida have combined medicine and advanced nanotechnological engineering to create a smarter, more targeted therapy that could overcome the most lethal gynecologic cancer. The technology involves combining Taxol, a chemotherapy drug, with magneto-electric nanoparticles that can penetrate the blood-brain barrier.

Starfish shell-mimicking crystals could advance 3-D printing pills

October 21, 2014 8:19 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

In a design that mimics a hard-to-duplicate texture of starfish shells, Univ. of Michigan engineers have made rounded crystals that have no facets. The team calls the crystals "nanolobes". The nanolobes' shape and the way they're made have promising applications. The geometry could potentially be useful to guide light in advanced LEDs, solar cells and non-reflective surfaces.

Study reveals optimal particle size for anticancer nanomedicines

October 16, 2014 8:10 am | News | Comments

Nanomedicines consisting of nanoparticles for targeted drug delivery to specific tissues and cells offer new solutions for cancer diagnosis and therapy. Understanding the interdependency of physiochemical properties of nanomedicines, in correlation to their biological responses and functions, is crucial for their further development of as cancer-fighters.

Is copper prostate cancer’s Kryptonite?

October 15, 2014 7:41 am | by Duke Medicine News and Communications | News | Comments

Like discriminating thieves, prostate cancer tumors scavenge and hoard copper that is an essential element in the body. But such avarice may be a fatal weakness. Researchers at Duke Medicine have found a way to kill prostate cancer cells by delivering a trove of copper along with a drug that selectively destroys the diseased cells brimming with the mineral, leaving non-cancer cells healthy.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading