Advertisement
Nanomedicine
Subscribe to Nanomedicine

The Lead

Discovery of nanotubes offers new clues about cell-to-cell communication

July 6, 2015 8:27 am | by Ian Demsky, Univ. of Michigan | News | Comments

When it comes to communicating with each other, some cells may be more "old school" than was previously thought. Certain types of stem cells use microscopic, thread-like nanotubes to communicate with neighboring cells, like a landline phone connection, rather than sending a broadcast signal, researchers have discovered.

Nanowire implants offer remote-controlled drug delivery

June 24, 2015 7:30 am | by Elizabeth K. Gardner, Purdue Univ. | News | Comments

A team of researchers has created a new implantable drug-delivery system using nanowires that...

Carbon nanoparticles you can make at home

June 18, 2015 1:55 pm | by Diana Yates, Life Sciences Editor Univ. of Illinois, Urbana-Champaign | News | Comments

Researchers have found an easy way to produce carbon nanoparticles that are small enough to...

To give cancer a deadly fever, NIST explores better nanoparticle design

June 18, 2015 10:15 am | by NIST | News | Comments

Heat may be the key to killing certain types of cancer, and new research from a team including...

View Sample

FREE Email Newsletter

Nanorobots swim through blood to deliver drugs

June 18, 2015 7:39 am | by American Chemical Society | Videos | Comments

Someday, treating patients with nanorobots could become standard practice to deliver medicine specifically to parts of the body affected by disease. But merely injecting drug-loaded nanoparticles might not always be enough to get them where they need to go. Now scientists are reporting in Nano Letters the development of new nanoswimmers that can move easily through body fluids to their targets.

Nanoparticles target, kill cancer stem cells that drive tumor growth

June 11, 2015 4:29 pm | by American Chemical Society | News | Comments

Many cancer patients survive treatment only to have a recurrence within a few years. Recurrences and tumor spreading are likely due to cancer stem cells that can be tough to kill with conventional cancer drugs. But now researchers have designed nanoparticles that specifically target these hardy cells to deliver a drug. The nanoparticle treatment, reported in ACS Nano, worked far better than the drug alone in mice.

Two young researchers working at the MIPT Laboratory of Nanooptics and Plasmonics, Dmitry Fedyanin and Yury Stebunov, have developed an ultracompact highly sensitive nanomechanical sensor for analyzing the chemical composition of substances and detecting

Physicists develop ultrasensitive nanomechanical biosensor

June 9, 2015 12:42 pm | by Moscow Institute of Physics and Technology | News | Comments

Researchers have developed an ultracompact highly sensitive nanomechanical sensor for analyzing the chemical composition of substances and detecting biological objects, such as viral disease markers, which appear when the immune system responds to incurable or hard-to-cure diseases, including HIV, hepatitis, herpes, and many others. The sensor will enable doctors to identify tumor markers.

Advertisement

Nanosponge-filled gel cleans up MRSA infections

May 18, 2015 7:23 am | by Univ. of California, San Diego | News | Comments

Nanoengineers at the Univ. of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA, an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA, without the use of antibiotics.

Tolou Shokuhfar and colleagues are developing techniques using 3D bioprinting to generate human tissue.

Bioprinting in 3D: Looks like candy, could regenerate nerve cells

May 12, 2015 10:23 am | by Michigan Technological University | News | Comments

The printer looks like a toaster oven with the front and sides removed. Its metal frame is built up around a stainless steel circle lit by an ultraviolet light. Stainless steel hydraulics and thin black tubes line the back edge, which lead to an inner, topside box made of red plastic. All together, the gray metal frame is small enough to fit on top of an old-fashioned school desk, but nothing about this 3D printer is old school.

A better way to build DNA scaffolds

May 6, 2015 12:47 pm | by Chris Chipello, McGill Univ. | Videos | Comments

Imagine taking strands of DNA and using it to build tiny structures that can deliver drugs to targets within the body or take electronic miniaturization to a whole new level. While it may still sound like science fiction to most of us, researchers have been piecing together and experimenting with DNA structures for decades.

A “super cool” way to deliver drugs

May 6, 2015 11:52 am | by George Hunka, American Friends of Tel Aviv Univ. | News | Comments

Water, when cooled below 32 F, eventually freezes. But some substances, when they undergo a process called "rapid-freezing" or "supercooling," remain in liquid form. The supercooling phenomenon has been studied for its possible applications in a wide spectrum of fields. A new Tel Aviv Univ. study published in Scientific Reports is the first to break down the rules governing the complex process of crystallization through rapid-cooling.

Nanoparticle drug reverses Parkinson’s-like symptoms in rats

April 22, 2015 11:26 am | by American Chemical Society | News | Comments

As baby boomers age, the number of people diagnosed with Parkinson's disease is expected to increase. Patients who develop this disease usually start experiencing symptoms around age 60 or older. Currently, there's no cure, but scientists are reporting a novel approach that reversed Parkinson's-like symptoms in rats. Their results, published in ACS Nano, could one day lead to a new therapy for human patients.

Advertisement

Happily ever after

April 21, 2015 8:20 am | by Cory Nealon, Univ. at Buffalo | News | Comments

Fastening protein-based medical treatments to nanoparticles isn't easy. With arduous chemistry, scientists can do it. But like a doomed marriage, the fragile binding that holds them together often separates. This problem, which has limited how doctors can use proteins to treat serious disease, may soon change.

Gold by special delivery intensifies cancer-killing radiation

April 14, 2015 7:47 am | by Kevin Stacey, Brown Univ. | News | Comments

Researchers have demonstrated a promising new way to increase the effectiveness of radiation in killing cancer cells. The approach involves gold nanoparticles tethered to acid-seeking compounds called pHLIPs. The pHLIPs (pH low-insertion peptides) home in on high acidity of malignant cells, delivering their nanoparticle passengers straight to the cells’ doorsteps.

Researchers deliver large particles into cells at high speed

April 9, 2015 12:06 pm | by Matthew Chin, Univ. of California, Los Angeles | News | Comments

A new device developed by Univ. of California, Los Angeles, engineers and doctors may eventually help scientists study the development of disease, enable them to capture improved images of the inside of cells and lead to other improvements in medical and biological research.

Nanoparticles provide novel way to apply drugs to dental plaque

April 1, 2015 4:26 pm | by Peter Iglinski, Univ. of Rochester | News | Comments

Therapeutic agents intended to reduce dental plaque and prevent tooth decay are often removed by saliva and the act of swallowing before they can take effect. But a team of researchers has developed a way to keep the drugs from being washed away. Dental plaque is made up of bacteria enmeshed in a sticky matrix of polymers, a polymeric matrix, that is firmly attached to teeth.

Prototype nanoneedles generate new blood vessels in mice

March 30, 2015 11:20 am | by Imperial College London | News | Comments

Scientists have developed tiny nanoneedles that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice. The researchers, from Imperial College London and Houston Methodist Research Institute, hope their nanoneedle technique could ultimately help damaged organs and nerves to repair themselves and help transplanted organs to thrive.

Advertisement

Carbon nanotube fibers make superior links to brain

March 25, 2015 10:33 am | by Mike Williams, Rice Univ. | News | Comments

Carbon nanotube fibers invented at Rice Univ. may provide a way to communicate directly with the brain. The fibers have proven superior to metal electrodes for deep brain stimulation and to read signals from a neuronal network. Because they provide a two-way connection, they show promise for treating patients with neurological disorders while monitoring the real-time response of neural circuits in areas that control movement and mood.

Spot treatment

March 19, 2015 1:41 pm | by Sonia Fernandez, Univ. of California, Santa Barbara | News | Comments

Acne, a scourge of adolescence, may be about to meet its ultra-high-tech match. By using a combination of ultrasound, gold-covered particles and lasers, researchers from Univ. of California, Santa Barbara and Sebacia have developed a targeted therapy that could potentially lessen the frequency and intensity of breakouts, relieving acne sufferers the discomfort and stress of dealing with severe and recurring pimples.

Sweet nanoparticles target stroke

March 13, 2015 11:42 am | by Spanish Foundation for Science and Technology | News | Comments

Materials resulting from chemical bonding of glucosamine, a type of sugar, with fullerenes, kind of nanoparticles known as buckyballs, might help to reduce cell damage and inflammation occurring after stroke. A team from the Max Planck Institute in Germany has tested this on mice, opening the door to potential new drugs for the cerebrovascular accident.

Magnetic brain stimulation

March 13, 2015 7:54 am | by David L. Chandler, MIT News Office | Videos | Comments

Researchers at Massachusetts Institute of Technology have developed a method to stimulate brain tissue using external magnetic fields and injected magnetic nanoparticles: a technique allowing direct stimulation of neurons, which could be an effective treatment for a variety of neurological diseases, without the need for implants or external connections.

Scientists find new class of drugs that dramatically increase healthy lifespan

March 10, 2015 1:56 pm | by The Scripps Research Institute | News | Comments

A research team from The Scripps Research Institute (TSRI), Mayo Clinic and other institutions has identified a new class of drugs that in animal models dramatically slows the aging process—alleviating symptoms of frailty, improving cardiac function and extending a healthy lifespan.

Tiny nanoparticles could make big impact for patients in need of cornea transplant

March 9, 2015 12:01 pm | by Johns Hopkins Univ. | News | Comments

Animal study shows that a nanoparticle applied at the time of surgery slowly releases needed medicine to reduce risk of rejection after eye surgery.                   

Nanodevice defeats drug resistance

March 3, 2015 7:30 am | by Anne Trafton, MIT News Office | News | Comments

Chemotherapy often shrinks tumors at first, but as cancer cells become resistant to drug treatment, tumors can grow back. A new nanodevice developed by Massachusetts Institute of Technology researchers can help overcome that by first blocking the gene that confers drug resistance, then launching a new chemotherapy attack against the disarmed tumors.

Graphene shows potential as anticancer therapeutic strategy

February 25, 2015 8:11 am | by Jamie Brown, Univ. of Manchester | News | Comments

Univ. of Manchester scientists have used graphene to target and neutralize cancer stem cells while not harming other cells. This new development opens up the possibility of preventing or treating a broad range of cancers, using a non-toxic material.

Building tailor-made DNA nanotubes step-by-step

February 24, 2015 8:10 am | by McGill Univ. | News | Comments

Researchers at McGill Univ. have developed a new, low-cost method to build DNA nanotubes block-by-block, a breakthrough that could help pave the way for scaffolds made from DNA strands to be used in applications such as optical and electronic devices or smart drug delivery systems. Many researchers, including the McGill team, have previously constructed nanotubes using a method that relies on spontaneous assembly of DNA in solution.

New nanogel for drug delivery

February 19, 2015 9:04 am | by Anne Trafton, MIT News Office | News | Comments

Chemical engineers have designed a new type of self-healing hydrogel that could be injected through a syringe. Such gels, which can carry one or two drugs at a time, could be useful for treating cancer, macular degeneration, or heart disease, among other diseases, the researchers say.

Making a better wound dressing

February 13, 2015 10:18 am | by American Chemical Society | News | Comments

With a low price tag and mild flavor, tilapia has become a staple dinnertime fish for many Americans. Now it could have another use: helping to heal our wounds. In ACS Applied Materials & Interfaces, scientists have shown that a protein found in this fish can promote skin repair in rats without an immune reaction, suggesting possible future use for human patients.

Gold nanotubes launch a three-pronged attack on cancer cells

February 13, 2015 9:10 am | by Sarah Reed, Univ. of Leeds | News | Comments

Scientists have shown that gold nanotubes have many applications in fighting cancer: internal nanoprobes for high-resolution imaging, drug delivery vehicles and agents for destroying cancer cells. The study, published in Advanced Functional Materials, details the first successful demonstration of the biomedical use of gold nanotubes in a mouse model of human cancer.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading