Advertisement
Nanomedicine
Subscribe to Nanomedicine

The Lead

Researcher’s nanoparticle key to new malaria vaccine

September 4, 2014 11:26 am | by Colin Poitras, UConn | News | Comments

A self-assembling nanoparticle designed by a Univ. of Connecticut (UConn) professor is the key component of a potent new malaria vaccine that is showing promise in early tests. For years, scientists trying to develop a malaria vaccine have been stymied by the malaria parasite’s ability to transform itself and “hide” in the liver and red blood cells of an infected person to avoid detection by the immune system.

Handheld scanner could aid complete removal of brain tumors

September 3, 2014 1:09 pm | News | Comments

Cancerous brain tumors are notorious for growing...

New DARPA program aimed at developing customized therapies

August 28, 2014 9:11 am | News | Comments

DARPA’s new Electrical Prescriptions (ElectRx)...

Living organ grown from lab-created cells

August 25, 2014 2:25 pm | Videos | Comments

Laboratory-grown replacement organs have moved a...

View Sample

FREE Email Newsletter

Breakthrough understanding of biomolecules could lead to new, better drugs

August 25, 2014 9:09 am | by Marcia Goodrich, Michigan Technological Univ. | News | Comments

There’s a certain type of biomolecule built like a nano-Christmas tree. Called a glycoconjugate, it’s many branches are bedecked with sugary ornaments. It’s those ornaments that get all the glory. That’s because, according to conventional wisdom, the glycoconjugate’s lowly “tree” basically holds the sugars in place as they do the important work of reacting with other molecules.

Vault nanoparticles show promise for cancer treatment, potential HIV cure

August 22, 2014 9:47 am | by Shaun Mason, Univ. of California, Los Angeles | News | Comments

A multidisciplinary team of scientists from the Univ. of California, Los Angeles and Stanford Univ. has used a naturally occurring nanoparticle called a vault to create a novel drug delivery system that could lead to advances in the treatment of cancer and HIV. Their findings could lead to cancer treatments that are more effective with smaller doses and to therapies that could potentially eradicate the HIV virus.

Immune cells get cancer-fighting boost from nanomaterials

August 14, 2014 9:00 am | by Rase McCry, Yale Univ. | News | Comments

Scientists at Yale Univ. have developed a novel cancer immunotherapy that rapidly grows and enhances a patient’s immune cells outside the body using carbon nanotube-polymer composites; the immune cells can then be injected back into a patient’s blood to boost the immune response or fight cancer.

Advertisement

Nanotech invention improves effectiveness of the “penicillin of cancer”

August 14, 2014 8:01 am | by Jared Sagoff, Argonne National Laboratory | News | Comments

By combining magnetic nanoparticles with one of the most common and effective chemotherapy drugs, Argonne National Laboratory researchers have created a way to deliver anti-cancer drugs directly into the nucleus of cancer cells. They have created nano-sized bubbles, or “micelles,” that contain magnetic nanoparticles of iron oxide and cisplatin, a conventional chemotherapy drug also known as “the penicillin of cancer.”

New material could enhance fast, accurate DNA sequencing

August 14, 2014 7:41 am | by Liz Ahlberg, Physical Sciences Editor, Univ. of Illinois, Urbana-Champaign | News | Comments

Gene-based personalized medicine has many possibilities for diagnosis and targeted therapy, but one big bottleneck: the expensive and time-consuming DNA sequencing process. Now, researchers at the Univ. of Illinois at Urbana-Champaign have found that nanopores in the material molybdenum disulfide (MoS2) could sequence DNA more accurately, quickly and inexpensively than anything yet available.

“Trojan horse” treatment could beat brain tumors

August 13, 2014 12:55 pm | News | Comments

A smart technology which involves smuggling gold nanoparticles into brain cancer cells has proven highly effective in lab-based tests in the U.K. The technique could eventually be used to treat glioblastoma multiforme, which is the most common and aggressive brain tumor in adults, and notoriously difficult to treat.

Scientists use lasers, carbon nanotubes to look inside living brains

August 8, 2014 8:19 am | by Bjorn Carey, Stanford News Service | News | Comments

Some of the most damaging brain diseases can be traced to irregular blood delivery in the brain. Now, Stanford Univ. chemists have employed lasers and carbon nanotubes to capture an unprecedented look at blood flowing through a living brain. The technique was developed for mice but could one day be applied to humans, potentially providing vital information in the study of stroke and migraines.

Advanced thin-film technique could deliver long-lasting medication

August 5, 2014 7:57 am | by Peter Dizikes, MIT News Office | News | Comments

About one in four older adults suffers from chronic pain. Many of those people take medication, usually as pills. But this is not an ideal way of treating pain: Patients must take medicine frequently, and can suffer side effects, since the contents of pills spread through the bloodstream to the whole body. Now researchers have refined a technique that could enable pain medication to be released directly to specific parts of the body.

Advertisement

World’s smallest propeller could be used for microscopic medicine

July 30, 2014 9:29 am | by Kevin Hattori, American Technion Society | News | Comments

An Israeli and German research team have succeeded in creating a tiny screw-shaped propeller that can move in a gel-like fluid, mimicking the environment inside a living organism. The filament that makes up the propeller, made of silica and nickel, is only 70 nm in diameter. The entire propeller is just 400 nm long.

Optimum inertial design for self-propulsion

July 29, 2014 11:01 am | News | Comments

A new study has investigated the effects of small but finite inertia on the propulsion of micro- and nano-scale swimming machines. Scientists have found that the direction of propulsion made possible by such inertia is opposite to that induced by a viscoelastic fluid. The findings could help to optimize the design of swimming machines to improve their mobility in medical applications.

Nanoparticle “alarm clock” may awaken immune systems put to sleep by cancer

July 25, 2014 3:09 pm | News | Comments

Cancerous tumors protect themselves by tricking the immune system into accepting everything as normal, even while cancer cells are dividing and spreading. One pioneering approach to combat this effect is to use nanoparticles to jumpstart the body's ability to fight tumors. Recent combines these therapeutic nanoparticles with heat to stimulate the immune system.

More than glitter

July 21, 2014 10:35 am | by Anne Trafton, MIT News Office | Videos | Comments

A special class of tiny gold particles can easily slip through cell membranes, making them good candidates to deliver drugs directly to target cells. A new study from Massachusetts Institute of Technology materials scientists reveals that these nanoparticles enter cells by taking advantage of a route normally used in vesicle-vesicle fusion, a crucial process that allows signal transmission between neurons. 

Self-assembling nanoparticle could improve MRI cancer scanning

July 16, 2014 8:44 am | News | Comments

Scientists have designed a new self-assembling nanoparticle that targets tumors, to help doctors diagnose cancer earlier. The new nanoparticle, developed by researchers in the U.K., boosts the effectiveness of magnetic resonance imaging scanning by specifically seeking out receptors that are found in cancerous cells.

Advertisement

Tiny DNA pyramids enter bacteria easily

July 9, 2014 11:49 am | News | Comments

Bacterial infections usually announce themselves with pain and fever but often can be defeated with antibiotics—and then there are those that are sneaky and hard to beat. Now, scientists have built a new weapon against such pathogens in the form of tiny DNA pyramids. Published in ACS Applied Materials & Interfaces, their study found the nanopyramids can flag bacteria and kill more of them than medicine alone.

FDA outlines policy for overseeing nanotechnology

June 24, 2014 3:23 pm | by Matthew Perrone - AP Health Writer - Associated Press | News | Comments

Federal regulators want to hear from companies using engineered micro-particles in their products, part of an effort to stay abreast of the growing field of nanotechnology. The U.S. Food and Drug Administration issued final recommendations Tuesday for companies using nanotechnology in products regulated by the government, which can include medical therapies, food and cosmetics.

Delivering drugs on cue

June 24, 2014 7:43 am | News | Comments

Current drug delivery systems used to administer chemotherapy to cancer patients typically release a constant dose of the drug over time, but a new study challenges this "slow and steady" approach and offers a novel way to locally deliver the drugs "on demand," as reported in the Proceedings of the National Academy of Sciences.

Nanoshell shields foreign enzymes used to starve cancer cells from immune system

June 17, 2014 11:24 am | News | Comments

Nanoengineers at UC San Diego have developed a nanoshell to protect foreign enzymes used to starve cancer cells as part of chemotherapy. Enzymes are naturally smart machines that are responsible for many complex functions and chemical reactions in biology. However, despite their huge potential, their use in medicine has been limited by the immune system, which is designed to attack foreign intruders.

A virus reveals the physics of nanopores

June 16, 2014 4:36 pm | by Kevin Stacey, Brown Univ. | News | Comments

Nanopores may one day lead a revolution in DNA sequencing. By sliding DNA molecules one at a time through tiny holes in a thin membrane, it may be possible to decode long stretches of DNA at lightning speeds. Scientists, however, haven’t quite figured out the physics of how polymer strands like DNA interact with nanopores.

Antibodies from the desert act as guides to disease cells

June 13, 2014 8:19 am | News | Comments

Researchers have developed nanoparticles that not only bypass the body’s defence system, but also find their way to the diseased cells. The procedure uses fragments from a particular type of antibody that only occurs in camels and llamas. The small particles were even successful under conditions which are very similar to the situation within potential patients’ bodies.

Research develops “onion” vesicles for drug delivery

June 10, 2014 11:22 am | by Evan Lerner, Univ. of Pennsylvania | News | Comments

One of the defining features of cells is their membranes. Each cell’s repository of DNA and protein-making machinery must be kept stable and secure from invaders and toxins. Scientists have attempted to replicate these properties, but, despite decades of research, even the most basic membrane structures, known as vesicles, still face many problems when made in the laboratory.

New molecule enables quick drug monitoring

June 9, 2014 10:07 am | Videos | Comments

Scientists in Switzerland have invented a molecule that can easily and quickly show how much drug is in a patient’s system. All that is needed to perform accurate measurements is a conventional digital camera. The result of innovative protein engineering and organic chemistry, the molecule has been shown to work on a range of common drugs for cancer, epilepsy and immunosuppression.

Targeting tumors using silver nanoparticles

June 9, 2014 8:32 am | by Julie Cohen, UC Santa Barbara | News | Comments

A new nanoparticle platform developed in California increases the efficiency of drug delivery and allows excess particles to be washed away. A simple etching technique using biocompatible chemicals rapidly disassembles and removes the silver nanoparticles outside living cells. This method leaves only the intact nanoparticles for imaging or quantification, revealing which cells have been targeted and how much each cell internalized.

Short nanotubes target pancreatic cancer

June 6, 2014 10:45 am | by Mike Williams, Rice Univ. | News | Comments

Short, customized carbon nanotubes have the potential to deliver drugs to pancreatic cancer cells and destroy them from within, according to researchers at Rice Univ. and the Univ. of Texas MD Anderson Cancer Center. Pristine nanotubes produced through a new process developed at Rice can be modified to carry drugs to tumors through gaps in blood-vessel walls that larger particles cannot fit through.

“Quadrapeutics” works in preclinical study of hard-to-treat tumors

June 2, 2014 7:52 am | Videos | Comments

The first preclinical study of a new Rice Univ.-developed anticancer technology found that a novel combination of existing clinical treatments can instantaneously detect and kill only cancer cells without harming surrounding normal organs. The research reports that Rice’s “quadrapeutics” technology was 17 times more efficient than conventional chemoradiation therapy against aggressive, drug-resistant head and neck tumors.

Hitchhiking nanotubes show how cells stir themselves

May 30, 2014 7:50 am | Videos | Comments

A team of researchers has successfully tracked single molecules inside living cells with carbon nanotubes. Through this new method, the researchers found that cells stir their interiors using the same motor proteins that serve in muscle contraction. The study, which sheds new light on biological transport mechanisms in cells, appears in Science.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading