Advertisement
Imaging Instruments
Subscribe to Imaging Instruments

The Lead

Faster, smaller, more informative

May 12, 2015 7:37 am | by Anne Trafton, MIT News Office | News | Comments

A new technique invented at Massachusetts Institute of Technology can measure the relative positions of tiny particles as they flow through a fluidic channel, potentially offering an easy way to monitor the assembly of nanoparticles, or to study how mass is distributed within a cell. With further advancements, this technology has the potential to resolve the shape of objects in flow as small as viruses, the researchers say.

A phone with the ultimate macro feature

April 29, 2015 12:45 pm | by The Optical Society | News | Comments

If you thought scanning one of those strange, square QR codes with your phone was somewhat...

Portable MRI could aid wounded soldiers in Third World

April 24, 2015 8:37 am | by Kevin Roark, Los Alamos National Laboratory | News | Comments

Scientists at Los Alamos National Laboratory are developing an ultra-low-field magnetic...

A silver lining

April 24, 2015 7:43 am | by Julie Cohen, Univ. of California, Santa Barbara | News | Comments

The silver used by Beth Gwinn’s research group at the Univ. of California, Santa Barbara, has...

View Sample

FREE Email Newsletter

Nondestructive 3-D imaging of biological cells with sound

April 23, 2015 8:28 am | by American Institute of Physics | News | Comments

Much like magnetic resonance imaging is able to scan the interior of the human body, the emerging technique of "picosecond ultrasonics," a type of acoustic imaging, can be used to make virtual slices of biological tissues without destroying them. Now, a team of researchers in Japan and Thailand has shown that picosecond ultrasonics can achieve micron resolution of single cells, imaging their interiors in slices separated by 150 nm.

Solidifying Image Acquisition

April 16, 2015 2:53 pm | by Lindsay Hock, Editor | Articles | Comments

Image analysis is of growing importance in science, and trends are observed for different layers of image acquisition. Quantifiable and reproducible data is a prerequisite for scientific publications. And, today, it isn’t sufficient to just acquire aesthetically pleasing images with a microscope. To get powerful scientific results, scientists must get as much information as they can from an image.

Detecting lysosomal pH with fluorescent probes

April 9, 2015 11:51 am | by Allison Mills, Michigan Technological Univ. | News | Comments

Lysosomes are the garbage disposals of animal cells. As the resources are limited in cells, organic materials are broken down and recycled a lot; and that’s what lysosomes do. Detecting problems with lysosomes is the focus of a new set of fluorescent probes developed by researchers at Michigan Technological Univ.

Advertisement

How do you feel? Video of your face may tell all

April 7, 2015 7:42 am | by Mike Williams, Rice Univ. | Videos | Comments

Rice Univ. researchers are developing a highly accurate, touch-free system that uses a video camera to monitor patients’ vital signs just by looking at their faces. The technique isn’t new, but engineering researchers in Rice’s Scalable Health Initiative are making it work under conditions that have so far stumped earlier systems.

Microsecond Raman imaging might probe cells, organs for disease

March 30, 2015 1:03 pm | by Emil Venere, Purdue Univ. | News | Comments

A vibrational spectroscopic imaging technology that can take images of living cells could represent an advanced medical diagnostic tool for the early detection of cancer and other diseases. High-speed spectroscopic imaging makes it possible to observe the quickly changing metabolic processes inside living cells and to image large areas of tissue, making it possible to scan an entire organ.

High-tech method allows rapid imaging of functions in living brain

March 30, 2015 11:49 am | by Julie Flory, Washington Univ. of St. Louis | News | Comments

Researchers studying cancer and other invasive diseases rely on high-resolution imaging to see tumors and other activity deep within the body's tissues. Using a new high-speed, high-resolution imaging method, a team at Washington Univ. in St. Louis were able to see blood flow, blood oxygenation, oxygen metabolism and other functions inside a living mouse brain at faster rates than ever before.

Precocious GEM

March 30, 2015 7:46 am | by Michael Baum, NIST | News | Comments

Scientists working at NIST and the NIH have devised and demonstrated a new, shape-shifting probe, about one-hundredth as wide as a human hair, which is capable of sensitive, high-resolution remote biological sensing that is not possible with current technology. If eventually put into widespread use, the design could have a major impact on research in medicine, chemistry, biology and engineering.

MRI based on sugar molecule can tell cancerous from noncancerous cells

March 27, 2015 8:32 am | by Shawna Williams, Johns Hopkins Univ. | News | Comments

Imaging tests like mammograms or CT scans can detect tumors, but figuring out whether a growth is or isn't cancer usually requires a biopsy to study cells directly. Now results of a Johns Hopkins Univ. study suggest that MRI could one day make biopsies more effective or even replace them altogether by noninvasively detecting telltale sugar molecules shed by the outer membranes of cancerous cells.

Advertisement

New technique paints tissue samples with light

March 24, 2015 3:48 pm | by University of Illinois at Urbana-Champaign | News | Comments

One infrared scan can give pathologists a window into the structures and molecules inside tissues and cells, enabling fast and broad diagnostic assessments, thanks to an imaging technique developed by University of Illinois researchers and clinical partners.

Green tea could improve MRIs

March 19, 2015 8:29 am | by American Chemical Society | News | Comments

Green tea’s popularity has grown quickly in recent years. Its fans can drink it, enjoy its flavor in their ice cream and slather it on their skin with lotions infused with it. Now, the tea could have a new, unexpected role—to improve the image quality of MRIs. Scientists report in ACS Applied Materials & Interfaces that they successfully used compounds from green tea to help image cancer tumors in mice.

Minimal device maximizes macula imaging

March 18, 2015 7:49 am | by Mike Williams, Rice Univ. | Videos | Comments

A smart and simple method developed at Rice Univ. to image a patient’s eye could help monitor eye health and spot signs of macular degeneration and diabetic retinopathy, especially in developing nations. The patient-operated, portable device invented at Rice is called mobileVision. It can be paired with a smartphone to give clinicians finely detailed images of the macula, without artificially dilating the pupil.

Study calls heart imaging into question for mild chest pain

March 14, 2015 2:05 pm | by Marilynn Marchione, AP Chief Medical Writer, Associated Press | News | Comments

A big federal study finds that people who see a doctor for chest pain have no less risk of suffering a heart attack, dying or being hospitalized later if they are checked with a fancy newer type of CT scan rather than a simple treadmill test or other older exam. CT scans, a type of x-ray that gives a very detailed look at heart arteries, have been used for about a decade without evidence they are better or worse than older tests.

The secret of wrinkling, folding, and creasing

March 9, 2015 12:16 pm | by David L. Chandler, MIT News Office | News | Comments

New research provides a general formula for understanding how layered materials form different surface patterns.                         

Advertisement

First detailed microscopy evidence of bacteria at the lower size limit of life

March 2, 2015 8:08 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

Scientists have captured the first detailed microscopy images of ultra-small bacteria that are believed to be about as small as life can get. The existence of ultra-small bacteria has been debated for two decades, but there hasn’t been a comprehensive electron microscopy and DNA-based description of the microbes until now.

Voltage tester for beating cardiac cells

February 18, 2015 9:36 am | by ETH Zurich | News | Comments

Electrical impulses play an important role in cells of the human body. For example, neurons use these impulses to transmit information along their branches and the body also uses them to control the contraction of muscles. The impulses are generated when special channel proteins open in the outer envelope of the cells, allowing charged molecules (ions) to enter or exit the cell. These proteins are referred to as ion channels.

Superior Resolution for the Biological World

February 13, 2015 12:47 pm | by Lindsay Hock, Editor | Articles | Comments

Traditional fluorescence microscopy has suffered from the resolution limits imposed by diffraction and the finite wavelength of light. Classical resolution is typically limited to about 200 nm in xy. Due to the nanoscale architecture of many biological structures, researchers developed super-resolution techniques, starting in the 1990s, to overcome this classical resolution limit in light microscopy.

Non-damaging x-ray technique unveils protein complex that uses sunlight to split water

February 6, 2015 10:32 am | by RIKEN | News | Comments

A more accurate view of the structure of the oxygen-evolving complex that splits water during photosynthesis is now in hand thanks to a study involving researchers from the RIKEN SPring-8 Center, Okayama Univ. and the Japan Science and Technology Agency. The new model of natural photosynthesis provides a blueprint for synthesizing water-splitting catalysts that mimic this natural process.

Diamonds could help bring proteins into focus

February 6, 2015 7:40 am | by David L. Chandler, MIT News Office | News | Comments

Proteins are the building blocks of all living things, and they exist in virtually unlimited varieties, most of whose highly complex structures have not yet been determined. Those structures could be key to developing new drugs or to understanding basic biological processes. But figuring out the arrangement of atoms in these complicated, folded molecules usually requires getting them to form crystals large enough to be observed in detail.

Microscopy technique allows mapping protein synthesis in living tissues, animals

February 4, 2015 3:06 pm | by Jessica Guenzel, Columbia Univ. | News | Comments

Researchers at Columbia Univ. have made a significant step toward visualizing complex protein metabolism in living systems with high resolution and minimum disturbance, a longstanding goal in the scientific community. In a recent study, the research team has reported a light microscopy method to image where the new proteins are produced and where the old proteins are degraded inside living tissues and animals.

How the brain ignores distractions

February 4, 2015 10:18 am | by David Orenstein, Brown Univ. | News | Comments

When we concentrate on something, we also engage in the unsung, parallel act of purposefully ignoring other things. A new study describes how the brain may achieve such “optimal inattention.” With this knowledge, scientists at Brown Univ. hope they can harness our power to ignore.

The ups and downs of the seemingly idle brain

January 21, 2015 9:24 am | by David Orenstein, Brown Univ. | News | Comments

Even in its quietest moments, the brain is never “off.” Instead, while under anesthesia, during slow-wave sleep, or even amid calm wakefulness, the brain’s cortex maintains a cycle of activity and quiet called “up” and “down” states. A new study by Brown Univ. neuroscientists probed deep into this somewhat mysterious cycle in mice, to learn more about how the mammalian brain accomplishes it.

One nanoparticle, six types of medical imaging

January 21, 2015 8:22 am | by Charlotte Hsu, Univ. at Buffalo | News | Comments

It’s technology so advanced that the machine capable of using it doesn’t yet exist. Using two biocompatible parts, Univ. at Buffalo researchers and their colleagues have designed a nanoparticle that can be detected by six medical imaging techniques: computed tomography (CT) scanning, positron emission tomography (PET) scanning, photoacoustic imaging, fluorescence imaging, upconversion imaging and Cerenkov luminescence imaging.

Team enlarges brain samples, making them easier to image

January 15, 2015 2:29 pm | by Anne Trafton, MIT News Office | News | Comments

Beginning with the invention of the first microscope in the late 1500s, scientists have been trying to peer into preserved cells and tissues with ever-greater magnification. The latest generation of so-called “super-resolution” microscopes can see inside cells with resolution better than 250 nm.

Advanced 3-D facial imaging may aid in early detection of autism

January 14, 2015 11:16 am | by Jeff Sossamon, Univ. of Missouri-Columbia | Videos | Comments

Autism is a spectrum of closely related disorders diagnosed in patients who exhibit a shared core of symptoms, including delays in learning to communicate and interact socially. Early detection of autism in children is the key for treatments to be most effective and produce the best outcomes. Using advanced 3-D imaging and statistical analysis techniques, researchers identified facial measurements in children with autism.

Human brain keeps memories tidy by pruning inaccurate ones

January 12, 2015 8:39 am | by Michael Hotchkiss, Office of Communications, Princeton Univ. | Videos | Comments

Forget about it. Your brain is a memory powerhouse, constantly recording experiences in long-term memory. Those memories help you find your way through the world: Who works the counter each morning at your favorite coffee shop? How do you turn on the headlights of your car? What color is your best friend's house?

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading