Advertisement
Genomics & Proteomics
Subscribe to Genomics & Proteomics
View Sample

FREE Email Newsletter

Scientists use x-rays to look at how DNA protects itself from UV light

June 23, 2014 2:51 pm | News | Comments

The molecular building blocks that make up DNA absorb ultraviolet light so strongly that sunlight should deactivate them, yet it does not. Now, scientists at SLAC National Accelerator Laboratory have made detailed observations of a “relaxation response” that protects these molecules, and the genetic information they encode, from UV damage.

Biologists find “missing link” in production of protein factories in cells

June 23, 2014 8:02 am | News | Comments

Ribosomes are responsible for the production of the wide variety of proteins that include enzymes. But until now researchers had not uncovered all of the details of how the proteins that are used to construct ribosomes are themselves produced. Biologists in California now say they have found the “missing link” in the chemical system that allows ribosomal proteins to be synthesized.

Protons power protein portal to push zinc out of cells

June 23, 2014 8:01 am | News | Comments

Researchers at The Johns Hopkins Univ. report they have deciphered the inner workings of a protein called YiiP that prevents the lethal buildup of zinc inside bacteria. They say understanding YiiP's movements will help in the design of drugs aimed at modifying the behavior of ZnT proteins, eight human proteins that are similar to YiiP, which play important roles in hormone secretion and in signaling between neurons.

Advertisement

New monkey model for AIDS offers promise for medical research

June 19, 2014 4:38 pm | by Zach Veilleux, The Rockefeller Univ. | News | Comments

HIV-1, the virus responsible for most cases of AIDS, is a very selective virus. It doesn’t readily infect species other than its usual hosts. While this would qualify as good news for most mammals, for humans this fact has made the search for effective treatments and vaccines for AIDS that much more difficult; without an accurate animal model of the disease, researchers have had few options for clinical studies of the virus.

Bioengineers invent way to speed up drug discovery

June 19, 2014 4:20 pm | by Tom Abate, Stanford Engineering | Videos | Comments

Think of the human body as an intricate machine whose working parts are proteins: molecules that change shape to enable our organs and tissues to perform tasks such as breathing, eating or thinking. Of the millions of proteins, 500 in the kinase family are particularly important to drug discovery. Kinases are messengers: They deliver signals that regulate and orchestrate the actions of other proteins.

Researchers develop genetic control mechanism for major livestock pest

June 19, 2014 1:04 pm | by Mick Kulikowski, North Carolina State Univ. News Services | News | Comments

Researchers from North Carolina State Univ. have developed a technique to control populations of the Australian sheep blowfly—a major livestock pest in Australia and New Zealand—by making female flies dependent upon a common antibiotic to survive.

Nature’s chem lab: How microorganisms manufacture drugs

June 19, 2014 8:25 am | by Jim Erickson, Univ. of Michigan | News | Comments

Researchers at the Univ. of Michigan have obtained the first 3-D snapshots of the "assembly line" within microorganisms that naturally produces antibiotics and other drugs. Understanding the complete structure and movement within the molecular factory gives investigators a solid blueprint for redesigning the microbial assembly line to produce novel drugs of high medicinal value.

Nanoshell shields foreign enzymes used to starve cancer cells from immune system

June 17, 2014 11:24 am | News | Comments

Nanoengineers at UC San Diego have developed a nanoshell to protect foreign enzymes used to starve cancer cells as part of chemotherapy. Enzymes are naturally smart machines that are responsible for many complex functions and chemical reactions in biology. However, despite their huge potential, their use in medicine has been limited by the immune system, which is designed to attack foreign intruders.

Advertisement

Many bodies prompt stem cells to change

June 16, 2014 4:45 pm | by Mike Williams, Rice Univ. | News | Comments

How does a stem cell decide what path to take? In a way, it’s up to the wisdom of the crowd. The DNA in a pluripotent stem cell is bombarded with waves of proteins whose ebb and flow nudge the cell toward becoming blood, bone, skin or organs. A new theory by scientists at Rice Univ. shows the cell’s journey is neither a simple step-by-step process nor all random.

A virus reveals the physics of nanopores

June 16, 2014 4:36 pm | by Kevin Stacey, Brown Univ. | News | Comments

Nanopores may one day lead a revolution in DNA sequencing. By sliding DNA molecules one at a time through tiny holes in a thin membrane, it may be possible to decode long stretches of DNA at lightning speeds. Scientists, however, haven’t quite figured out the physics of how polymer strands like DNA interact with nanopores.

With the right rehabilitation, paralyzed rats learn to grip again

June 16, 2014 2:58 pm | News | Comments

After a large stroke, motor skills barely improve, even with rehabilitation. An experiment conducted on rats demonstrates that a course of therapy combining the stimulation of nerve fiber growth with drugs and motor training can be successful. The key, however, is the correct sequence: Paralyzed animals only make an almost complete recovery if the training is delayed until after the growth promoting drugs have been administered.

Scientists’ discoveries could help neutralize chemical weapons

June 16, 2014 2:32 pm | by Amy Blakely, Univ. of Tennessee, Knoxville | News | Comments

Researchers at the Univ. of Tennessee (UT) are a step closer to creating a prophylactic drug that would neutralize the deadly effects of the chemical weapons used in Syria and elsewhere. Jeremy Smith, UT-ORNL Governor’s Chair and an expert in computational biology, is part of the team that is trying to engineer enzymes—called bioscavengers—so they work more efficiently against chemical weapons.

Proliferation cues “natural killer” cells for job change

June 12, 2014 12:13 pm | by David Orenstein, Brown Univ. | News | Comments

Why would already abundant “natural killer” cells proliferate even further after subduing an infection? It’s been a biological mystery for 30 years. But now Brown Univ. scientists have an answer: After proliferation, the cells switch from marshaling the immune response to calming it down.

Advertisement

DNA-lined nanoparticles form switchable thin films on liquid surface

June 11, 2014 8:22 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Scientists seeking ways to engineer the assembly of tiny particles measuring just billionths of a meter have achieved a new first: the formation of a single layer of nanoparticles on a liquid surface where the properties of the layer can be easily switched. Understanding the assembly of such nanostructured thin films could lead to the design of new kinds of membranes with a variable mechanical response for a wide range of applications.

Protein could put antibiotic-resistant bugs in handcuffs

June 10, 2014 7:38 am | News | Comments

Staph infections that become resistant to multiple antibiotics don't happen because the bacteria themselves adapt to the drugs, but because of a kind of genetic parasite they carry called a plasmid that helps its host survive the antibiotics. Plasmids are rings of bare DNA containing a handful of genes that are essentially freeloaders, borrowing most of what they need to live from their bacterial host.

Common bean genome sequence may help improve critical food crop

June 9, 2014 10:43 am | News | Comments

An international collaboration of researchers have sequenced and analyzed the genome of the common bean to begin to identify genes involved in critical traits such as size, flavor, disease resistance and drought tolerance. They learned that, unlike most other food crops, the common bean was domesticated twice by humans about 8,000 years ago. The results of the study may help guide modern breeding programs.

New molecule enables quick drug monitoring

June 9, 2014 10:07 am | Videos | Comments

Scientists in Switzerland have invented a molecule that can easily and quickly show how much drug is in a patient’s system. All that is needed to perform accurate measurements is a conventional digital camera. The result of innovative protein engineering and organic chemistry, the molecule has been shown to work on a range of common drugs for cancer, epilepsy and immunosuppression.

Scientists reveal details of calcium “safety valve” in cells

June 9, 2014 8:18 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Sometimes a cell has to die—when it's done with its job or inflicted with injury that could otherwise harm an organism. Conversely, cells that refuse to die when expected can lead to cancer. So scientists interested in fighting cancer have been keenly interested in learning the details of "programmed cell death." They want to understand what happens when this process goes awry and identify new targets for anticancer drugs.

Better tissue healing with disappearing hydrogels

June 9, 2014 8:06 am | by Peter Iglinski, Univ. of Rochester | News | Comments

When stem cells are used to regenerate bone tissue, many wind up migrating away from the repair site, which disrupts the healing process. But a technique employed by a Univ. of Rochester research team keeps the stem cells in place, resulting in faster and better tissue regeneration. The keyis encasing the stem cells in polymers that attract water and disappear when their work is done.

New clues to why older women are more vulnerable to breast cancer

June 6, 2014 10:56 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

Scientists from Lawrence Berkeley National Laboratory have gained more insights into why older women are more susceptible to breast cancer. They found that as women age, the cells responsible for maintaining healthy breast tissue stop responding to their immediate surroundings, including mechanical cues that should prompt them to suppress nearby tumors.

Scientists unravel molecular secret of short, intense workouts

June 5, 2014 1:59 pm | News | Comments

In the last few years, the benefits of short, intense workouts have been extolled by both researchers and exercise fans as something of a metabolic panacea capable of providing greater overall fitness. Now, a new study from scientists at The Scripps Research Institute in Florida confirm that there is something molecularly unique about intense exercise: the activation of a single protein.

Tech Aids Cancer Research

June 4, 2014 2:32 pm | by Lindsay Hock, Managing Editor | Thermo Fisher Scientific | Articles | Comments

Cancer is a group of diseases characterized by uncontrolled growth and spread of abnormal cells. The disease can be caused by both external and internal factors; and, if the spread isn’t controlled, it can result in death. The annual cancer statistics report from the American Cancer Society estimates there will be 1,885,540 new cancer cases and 585,720 cancer deaths in the U.S. for 2014.

Scientists obtain high-speed snapshots of biomolecules

June 2, 2014 12:04 pm | News | Comments

Using synchrotron light, scientists have pioneered a new way to analyze delicate biomolecules. The new approach, called protein serial crystallography, is made possible by a new class of high-intensity x-ray sources called free-electron lasers and could reveal the atomic structure of proteins that were previously inaccessible to synchrotrons.

Scientists use DNA origami trick to create 2-D structures

June 2, 2014 10:23 am | News | Comments

Scientists at New York Univ. and the Univ. of Melbourne have developed a method using DNA origami to turn 1-D nanomaterials into two dimensions. Their breakthrough, published in Nature Nanotechnology, offers the potential to enhance fiber optics and electronic devices by reducing their size and increasing their speed.

Leptin influences brain cells that control appetite

June 2, 2014 10:14 am | by Karen N. Peart, Yale Univ. | News | Comments

Twenty years after the hormone leptin was found to regulate metabolism, appetite and weight through brain cells called neurons, Yale School of Medicine researchers have found that the hormone also acts on other types of cells to control appetite.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading