Advertisement
Genomics & Proteomics
Subscribe to Genomics & Proteomics
View Sample

FREE Email Newsletter

Bacterial armor holds clues for self-assembling nanostructures

February 13, 2015 8:35 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Imagine thousands of copies of a single protein organizing into a coat of chainmail armor that protects the wearer from harsh and ever-changing environmental conditions. That is the case for many microorganisms. In a new study, researchers with Lawrence Berkeley National Laboratory have uncovered key details in this natural process that can be used for the self-assembly of nanomaterials into complex 2- and 3-D structures.

Shedding light on structure of key cellular “gatekeeper”

February 13, 2015 8:22 am | by Jon Nalick, Caltech | News | Comments

Facing a challenge akin to solving a 1,000-piece jigsaw puzzle while blindfolded, and without touching the pieces, many structural biochemists thought it would be impossible to determine the atomic structure of a massive cellular machine called the nuclear pore complex, which is vital for cell survival. But after 10 years of attacking the problem, a team recently solved almost a third of the puzzle.

Squid Edit Their Gene Code As They Go

February 13, 2015 7:00 am | by American Friends of Tel Aviv Univ. | News | Comments

Research that explored RNA editing in the Doryteuthis pealieii squid found it to be the first example of an animal that can edit its own genetic makeup on-the-fly to modify most of its proteins, enabling adjustments to its immediate surroundings.

Advertisement

Engineers put the “squeeze” on human stem cells

February 10, 2015 2:10 pm | by Ioana Patringenaru, Univ. of California, San Diego | News | Comments

After using optical tweezers to squeeze a tiny bead attached to the outside of a human stem cell, researchers now know how mechanical forces can trigger a key signaling pathway in the cells. The squeeze helps to release calcium ions stored inside the cells and opens up channels in the cell membrane that allow the ions to flow into the cells, according to the study led by Univ. of California, San Diego bioengineer Yingxiao Wang.

DNA “cage” could improve nanopore technology

February 10, 2015 10:51 am | by Kevin Stacey, Brown Univ. | News | Comments

Despite having a diameter tens of thousands of times smaller than a human hair, nanopores could be the next big thing in DNA sequencing. By zipping DNA molecules through these tiny holes, scientists hope to one day read off genetic sequences in the blink of an eye. Now, researchers from Brown Univ. have taken the potential of nanopore technology one step further.

Controlling genes with light

February 9, 2015 11:57 am | by Ken Kingery, Duke Univ. | News | Comments

Duke Univ. researchers have devised a method to activate genes in any specific location or pattern in a lab dish with the flip of a light switch by crossing a bacterium’s viral defense system with a flower’s response to sunlight. With the ability to use light to activate genes in specific locations, researchers can better study genes’ functions.

Forcing wounds to close

February 9, 2015 10:20 am | by Amal Naquiah, National Univ. of Singapore | News | Comments

A collaborative study led by scientists from the Mechanobiology Institute and the National Univ. of Singapore has revealed the mechanical forces that drive epithelial wound healing in the absence of cell supporting environment. This research was published in Nature Communications.

What autism can teach us about brain cancer

February 9, 2015 9:34 am | by Catherine Kolf, Johns Hopkins Univ. | News | Comments

Applying lessons learned from autism to brain cancer, researchers at The Johns Hopkins Univ. have discovered why elevated levels of the protein NHE9 add to the lethality of the most common and aggressive form of brain cancer, glioblastoma. Their discovery suggests that drugs designed to target NHE9 could help to successfully fight the deadly disease.

Advertisement

DNA strands on end of chromosomes hint when we will die

February 6, 2015 1:17 pm | by Todd Hollingshead, Brigham Young Univ. | News | Comments

Brigham Young Univ. biologist Jonathan Alder has a startling secret he doesn’t freely share: he knows when most of us are going to die. Okay, he doesn’t know exactly the day or time, but he has a pretty good idea, thanks to his research on tiny biological clocks attached to our chromosomes. These DNA end caps, called telomeres, are the great predictors of life expectancy: the shorter your telomeres, the shorter your lifespan.

Non-damaging x-ray technique unveils protein complex that uses sunlight to split water

February 6, 2015 10:32 am | by RIKEN | News | Comments

A more accurate view of the structure of the oxygen-evolving complex that splits water during photosynthesis is now in hand thanks to a study involving researchers from the RIKEN SPring-8 Center, Okayama Univ. and the Japan Science and Technology Agency. The new model of natural photosynthesis provides a blueprint for synthesizing water-splitting catalysts that mimic this natural process.

New source of cells for modeling malaria

February 6, 2015 9:40 am | by Anne Trafton, MIT News Office | News | Comments

In 2008, the World Health Organization announced a global effort to eradicate malaria, which kills about 800,000 people every year. As part of that goal, scientists are trying to develop new drugs that target the malaria parasite during the stage when it infects the human liver, which is crucial because some strains of malaria can lie dormant in the liver for several years before flaring up.

Diamonds could help bring proteins into focus

February 6, 2015 7:40 am | by David L. Chandler, MIT News Office | News | Comments

Proteins are the building blocks of all living things, and they exist in virtually unlimited varieties, most of whose highly complex structures have not yet been determined. Those structures could be key to developing new drugs or to understanding basic biological processes. But figuring out the arrangement of atoms in these complicated, folded molecules usually requires getting them to form crystals large enough to be observed in detail.

15-million-year-old mollusk protein found

February 5, 2015 10:33 am | by Robert Hazen, Carnegie Institute | News | Comments

A team of Carnegie Institute scientists have found “beautifully preserved” 15-million-year-old thin protein sheets in fossil shells from southern Maryland. The team collected samples from Calvert Cliffs, along the shoreline of the Chesapeake Bay, a popular fossil collecting area. They found fossilized shells of a snail-like mollusk called Ecphora that lived in the mid-Miocene era.

Advertisement

Scientists call for antibody “bar code” system to follow Human Genome Project

February 4, 2015 4:05 pm | by Nancy Ambrosiano, Los Alamos National Laboratory | News | Comments

More than 100 researchers from around the world have collaborated to craft a request that could fundamentally alter how the antibodies used in research are identified, a project potentially on the scale of the now-completed Human Genome Project.

Record keeping helps bacteria’s immune system fight invaders

February 4, 2015 10:01 am | by SLAC Office of Communications | News | Comments

Bacteria have a sophisticated means of defending themselves, and they need it: more viruses infect bacteria than any other biological entity. Two experiments undertaken at the SLAC National Accelerator Laboratory provide new insight at the heart of bacterial adaptive defenses in a system called CRISPR, short for Clustered Regularly Interspaced Short Palindromic Repeat.

Getting yeast to pump up the protein production

February 3, 2015 11:43 am | by Amanda Morris, Northwestern Univ. | News | Comments

From manufacturing life-saving biopharmaceuticals to producing energy-efficient biofuels, the cost-effective production of proteins will be essential to revolutionizing the future of health care and energy. For years, scientists have turned to yeast as a quick and inexpensive way to mass-produce proteins for a variety of useful products. Now Northwestern Univ. has found a way to gather more protein without making the yeast produce more.

In a role reversal, RNAs proofread themselves

February 2, 2015 7:42 am | by Jaclyn Jansen, Cold Spring Harbor Laboratory | News | Comments

Building a protein is a lot like a game of telephone: information is passed along from one messenger to another, creating the potential for errors every step of the way. There are separate, specialized enzymatic machines that proofread at each step, ensuring that the instructions encoded in our DNA are faithfully translated into proteins.

DNA nanoswitches reveal how life’s molecules connect

January 30, 2015 8:17 am | by Kat J. McAlpine, Wyss Institute for Biologically Inspired Engineering | News | Comments

A complex interplay of molecular components governs most aspects of biological sciences: healthy organism development, disease progression and drug efficacy are all dependent on the way life's molecules interact in the body. Understanding these biomolecular interactions is critical for the discovery of new therapeutics and diagnostics to treat diseases, but currently requires scientists to have access to expensive laboratory equipment.

New clues about a brain protein with high affinity for valium

January 29, 2015 4:18 pm | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Valium, one of the best known antianxiety drugs, produces its calming effects by binding with a particular protein in the brain. But the drug has an almost equally strong affinity for a completely different protein. Understanding this secondary interaction might offer clues about Valium's side effects and point the way to more effective drugs.

Genetically engineered antibodies show enhanced HIV-fighting abilities

January 29, 2015 4:06 pm | by Kimm Fesenmaier, Caltech | News | Comments

Capitalizing on a new insight into HIV's strategy for evading antibodies, Caltech researchers have developed antibody-based molecules that are more than 100 times better than our bodies' own defenses at binding to and neutralizing HIV, when tested in vitro. The work suggests a novel approach that could be used to engineer more effective HIV-fighting drugs.

Neutron beams reveal how two potential pieces of Parkinson’s puzzle fit

January 29, 2015 11:44 am | by Chad Boutin, NIST | News | Comments

To understand diseases like Parkinson’s, the tiniest of puzzles may hold big answers. That’s why a team including scientists from NIST have determined how two potentially key pieces of the Parkinson’s puzzle fit together, in an effort to reveal how the still poorly understood illness develops and affects its victims.

X-ray study reveals division of labor in cell health protein

January 29, 2015 11:24 am | by SLAC Office of Communications | News | Comments

Researchers working in part at the SLAC National Accelerator Laboratory have discovered that a key protein for cell health, which has recently been linked to diabetes, cancer and other diseases, can multitask by having two identical protein parts divide labor. The TH enzyme, short for transhydrogenase, is a crucial protein for most forms of life. In humans and other higher organisms, it works within mitochondria.

Why upper motor neurons degenerate in ALS

January 29, 2015 8:44 am | by Marla Paul, Northwestern Univ. | News | Comments

For the first time, scientists have revealed a mechanism underlying the cellular degeneration of upper motor neurons, a small group of neurons in the brain recently shown to play a major role in ALS pathology. ALS, or amyotrophic lateral sclerosis, is a fatal neuromuscular disorder marked by the degeneration of motor neurons, which causes muscle weakness and impaired speaking, swallowing and breathing that leads to paralysis and death.

New mechanism unlocked for evolution of green fluorescent protein

January 28, 2015 10:51 am | by Jenny Green, Arizona State Univ. | News | Comments

A primary challenge in the biosciences is to understand the way major evolutionary changes in nature are accomplished. Sometimes the route turns out to be very simple. A group of scientists showed, for the first time, that a hinge migration mechanism, driven solely by long-range dynamic motions, can be the key for evolution of a green-to-red photoconvertible phenotype in a green fluorescent protein.

Ribose-seq identifies, locates ribonucleotides in genomic DNA

January 28, 2015 10:10 am | by John Toon, Georgia Institute of Technology | News | Comments

Ribonucleotides, units of RNA, can become embedded in genomic DNA during processes such as DNA replication and repair, affecting the stability of the genome by contributing to DNA fragility and mutability. Scientists have known about the presence of ribonucleotides in DNA, but until now had not been able to determine exactly what they are and where they are located in the DNA sequences.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading