Advertisement
Genomics & Proteomics
Subscribe to Genomics & Proteomics

The Lead

Synthetic amino acid enables safe, new biotechnology solutions

January 26, 2015 12:13 pm | by Bill Hathaway, Yale Univ. | News | Comments

Scientists from Yale Univ. have devised a way to ensure genetically modified organisms (GMOs) can be safely confined in the environment, overcoming a major obstacle to widespread use of GMOs in agriculture, energy production, waste management and medicine.

How cancer turns good cells to the dark side

January 26, 2015 8:38 am | by Mike Williams, Rice Univ. | News | Comments

Cancer uses a little-understood element of cell signaling to hijack the communication process...

Trust your gut

January 23, 2015 9:01 am | by Laura Bailey, Univ. of Michigan | News | Comments

E. coli usually brings to mind food poisoning and beach closures, but researchers...

Rare neurological disease shines light on health of essential nerve cells

January 23, 2015 8:35 am | by David Tennebaum, Univ. of Wisconsin-Madison | News | Comments

Ian Duncan is a Scotsman with the iron discipline and stamina of a competitive marathoner,...

View Sample

FREE Email Newsletter

Pictured together for the first time: A chemokine and its receptor

January 23, 2015 8:12 am | by Heather Buschman, Univ. of California, San Diego | News | Comments

Researchers report the first crystal structure of the cellular receptor CXCR4 bound to an immune signaling protein called a chemokine. The structure, published in Science, answers longstanding questions about a molecular interaction that plays an important role in human development, immune responses, cancer metastasis and HIV infections.

New analysis explains collagen’s force

January 22, 2015 7:48 am | by David L. Chandler, MIT News Office | News | Comments

Research combining experimental work and detailed molecular simulations has revealed, for the first time, the complex role that water plays in collagen. The new analysis reveals an important mechanism that had never been observed before: Adding even small amounts of water to, or removing water from, collagen in tendons can generate surprisingly strong forces, as much as 300 times stronger than the forces generated by muscles.

Study: DNA trick cripples bacteria that escape confinement

January 21, 2015 2:18 pm | by By Malcolm Ritter - AP Science Writer - Associated Press | News | Comments

Bacteria have been modified so that they die if they get out of human control, a potential step toward better management of genetically engineered organisms—perhaps including crops, researchers say. Genetically altered microbes are used now in industry to produce fuels, medicines and other chemicals. The new technique might also reduce the risk of using them outdoors, such as for cleaning up toxic spills.

Advertisement

The ups and downs of the seemingly idle brain

January 21, 2015 9:24 am | by David Orenstein, Brown Univ. | News | Comments

Even in its quietest moments, the brain is never “off.” Instead, while under anesthesia, during slow-wave sleep, or even amid calm wakefulness, the brain’s cortex maintains a cycle of activity and quiet called “up” and “down” states. A new study by Brown Univ. neuroscientists probed deep into this somewhat mysterious cycle in mice, to learn more about how the mammalian brain accomplishes it.

“Microcapsules” have potential to repair damage caused by osteoarthritis

January 20, 2015 8:29 am | by Queen Mary Univ. of London | News | Comments

A new “microcapsule” treatment delivery method developed by researchers at Queen Mary Univ. of London could reduce inflammation in cartilage affected by osteoarthritis and reverse damage to tissue. A protein molecule called C-type natriuretic peptide (CNP), which occurs naturally in the body, is known to reduce inflammation and aid in the repair of damaged tissue.

Hydrogels deliver on blood-vessel growth

January 20, 2015 7:50 am | by Mike Williams, Rice Univ. | Videos | Comments

Rice Univ. scientists have found the balance necessary to aid healing with high-tech hydrogel. The team created a new version of the hydrogel that can be injected into an internal wound and help it heal while slowly degrading as it is replaced by natural tissue. Hydrogels are used as a scaffold upon which cells can build tissue. The new hydrogel overcomes a host of issues that have kept them from reaching their potential to treat injuries.

New genetic clues found in fragile X syndrome

January 16, 2015 1:40 pm | by Julia Evangelou Strait, Senior Medical Sciences Writer, Washington Univ., St. Louis | News | Comments

Scientists have gained new insight into fragile X syndrome by studying the case of a person without the disorder, but with two of its classic symptoms. In patients with fragile X, a key gene is completely disabled, eliminating a protein that regulates electrical signals in the brain and causing a host of behavioral, neurological and physical symptoms.

Study details link between inflammation and cancer

January 16, 2015 9:28 am | by Anne Trafton, MIT News Office | News | Comments

A new study from Massachusetts Institute of Technology reveals one reason why people who suffer from chronic inflammatory diseases such as colitis have a higher risk of mutations that cause cancer. The researchers also found that exposure to DNA-damaging chemicals after a bout of inflammation boosts these mutations even more, further increasing cancer risk.

Advertisement

Bone stem cells shown to regenerate bone and cartilage in adult mice

January 16, 2015 8:24 am | by Columbia Univ. Medical Center | News | Comments

A stem cell capable of regenerating both bone and cartilage has been identified in bone marrow of mice. The cells, called osteochondroreticular (OCR) stem cells, were discovered by tracking a protein expressed by the cells. Using this marker, the researchers found that OCR cells self-renew and generate key bone and cartilage cells, including osteoblasts and chondrocytes.

Shining a light on quantum dots measurement

January 16, 2015 8:14 am | by Syracuse Univ. | News | Comments

Due to their nanoscale dimensions and sensitivity to light, quantum dots are being used for a number of bioimaging applications including in vivo imaging of tumor cells, detection of biomolecules and measurement of pH changes. When quantum dots are introduced in biological media, proteins surround the nanoparticles and form a corona. The formation of the protein corona changes the sensitivity of the quantum dots to light.

Scientists develop novel platform for treatment of breast, pancreatic cancer

January 14, 2015 4:18 pm | by The Scripps Research Institute | News | Comments

Scientists from The Scripps Research Institute have identified a novel synthetic compound that sharply inhibits the activity of a protein that plays an important role in in the progression of breast and pancreatic cancers. In the new study the scientists showed that the compound, known as SR1848, reduces the activity and expression of the cancer-related protein called “liver receptor homolog-1” or LRH-1.

DNA “glue” could be used to build tissues, organs

January 14, 2015 10:23 am | by American Chemical Society | News | Comments

DNA molecules provide the "source code" for life in humans, plants, animals and some microbes. But now researchers report an initial study showing that the strands can also act as a glue to hold together 3-D-printed materials that could someday be used to grow tissues and organs in the laboratory.

Scientists use “NanoVelcro” and temperature control to extract tumor cells from blood

January 14, 2015 9:06 am | by Shaun Mason, Univ. of California, Los Angeles | News | Comments

A group led by scientists has developed a new method for effectively extracting and analyzing cancer cells circulating in patients’ blood. Circulating tumor cells are cancer cells that break away from tumors and travel in the blood, looking for places in the body to grow new tumors called metastases. Capturing these rare cells would allow doctors to detect and analyze the cancer so they could tailor treatment for individual patients.

Advertisement

First contracting human muscle grown in laboratory

January 14, 2015 8:28 am | by Ken Kingery, Duke Univ. | Videos | Comments

In a laboratory first, Duke Univ. researchers have grown human skeletal muscle that contracts and responds just like native tissue to external stimuli such as electrical pulses, biochemical signals and pharmaceuticals. The laboratory-grown tissue should soon allow researchers to test new drugs and study diseases in functioning human muscle outside of the human body.

Device allows manipulation of differentiating stem cells

January 14, 2015 8:20 am | by Amanda Morris, Northwestern Univ. | News | Comments

Electroporation is a powerful technique in molecular biology. By using an electrical pulse to create a temporary nanopore in a cell membrane, researchers can deliver chemicals, drugs and DNA directly into a single cell. But existing electroporation methods require high electric field strengths and for cells to be suspended in solution, which disrupts cellular pathways and creates a harsh environment for sensitive primary cells.

Photonic crystal nanolaser biosensor simplifies DNA detection

January 13, 2015 12:01 pm | by American Institute of Physics | News | Comments

A simple method to sense DNA, as well as potential biomarker proteins of cancer or other diseases such as Alzheimer's, may soon be within reach thanks to the work of a team of Yokohama National Univ. researchers in Japan. As the team reports in Applied Physics Letters, they created a photonic crystal nanolaser biosensor capable of detecting the adsorption of biomolecules based on the laser's wavelength shift.

Watching how cells interact

January 13, 2015 7:48 am | by Anne Trafton, MIT News Office | News | Comments

The immune system is a complex network of many different cells working together to defend against invaders. Successfully fighting off an infection depends on the interactions between these cells. A new device developed by Massachusetts Institute of Technology engineers offers a much more detailed picture of that cellular communication.

Scientists find brain protein aids influenza recovery

January 12, 2015 7:55 am | by Washington State Univ. | News | Comments

Washington State Univ. Spokane scientists have found a brain protein that boosts the healing power of sleep and speeds an animal's recovery from the flu. The research has determined that a brain-specific protein is uniquely involved in sleep responses triggered by the influenza virus in mice. Without the protein, animals develop more severe symptoms of infection and die at higher rates than regular or control mice.

Solving a case of intercellular entrapment

January 9, 2015 7:51 am | by Julie Cohen, Univ. of California, Santa Barbara | News | Comments

Optogenetics, which uses light to control cellular events, is poised to become an important technology in molecular biology and beyond. The Reich Group in Univ. of California, Santa Barbara’s Dept. of Chemistry and Biochemistry has made a major contribution to this emergent field by developing a light-activated nanocarrier that transports proteins into cells and releases them on command.

Broad immune response may be needed to destroy latent HIV

January 8, 2015 10:43 am | by Ziba Kashef, Yale Univ. | News | Comments

A major barrier to finding a cure for HIV/AIDS is the presence of latent HIV in the cells of chronically infected individuals. But a team of Yale and Johns Hopkins researchers may have pinpointed a strategy for eliminating the residual virus. Despite treatment with antiretroviral therapy, HIV persists in patients in a latent reservoir.

Special delivery

January 8, 2015 8:12 am | by Sonia Fernandez, Univ. of California, Santa Barbara | News | Comments

Inflammation is a normal and often beneficial response to injury or infection. The swelling, heat and even pain are the body’s attempts to protect its soft tissue, remove offending objects, substances or microbes and initiate healing. However, persistent inflammation is often indicative of more serious conditions and can lead to problems of its own, including impaired healing, loss of function or even tissue death.

Microfluidic Method for Primary Neuron Culture and Analysis

January 7, 2015 8:42 am | by Paul J. Hung, Shin-Yi Cindy Chen, Ivana Zubonja and Terry A. Gaige, EMD Millipore | Articles | Comments

Dissecting neuron function, while crucially important for understanding normal and pathological neurological processes, requires measuring the responses of live cells to external stimuli. Because of the inherent difficulties in performing perturbation analyses inside living organisms, there has been a longstanding drive towards developing methodologies for in vitro analysis of neurons.

Study pinpoints autism-linked protein for sculpting brain connections

January 7, 2015 8:00 am | by Karl Bates, Duke Univ. | News | Comments

Shortly after birth, human brains expand rapidly with the experience of an entirely new world. During this period, neurons in the newborn brain compete with one another to form lasting connections, called synapses. A new study by Duke Univ. researchers provides a close-up of synapse refinement and identifies a protein that is crucial in this process.

Responsive material could be the “golden ticket” of sensing

January 7, 2015 7:45 am | by Univ. of Cambridge | News | Comments

Researchers from the Univ. of Cambridge have developed a new self-assembled material, which, by changing its shape, can amplify small variations in temperature and concentration of biomolecules, making them easier to detect. The material, which consists of synthetic spheres “glued” together with short strands of DNA, could be used to underpin a new class of biosensors, or form the basis for new drug delivery systems.

Body clock protects metabolic health

January 6, 2015 3:30 pm | by Tom Vasich, Univ. of California, Irvine | News | Comments

Univ. of California, Irvine scientists studying the role of circadian rhythms in skin stem cells found that this clock plays a key role in coordinating daily metabolic cycles and cell division. Their research, which appears in Cell Reports, shows, for the first time, how the body’s intrinsic day-night cycles protect and nurture stem cell differentiation.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading