Advertisement
Genetic Engineering
Subscribe to Genetic Engineering
View Sample

FREE Email Newsletter

Scientists build a living patch for damaged hearts

May 6, 2013 12:24 pm | News | Comments

Duke University biomedical engineers have grown three-dimensional human heart muscle that acts just like natural tissue. The "heart patch" grown in the laboratory from human cells overcomes two major obstacles facing cell-based therapies—the patch conducts electricity at about the same speed as natural heart cells and it "squeezes" appropriately.  

Heart cells change stem cell behavior

May 3, 2013 9:57 am | News | Comments

Stem cells drawn from amniotic fluid show promise for tissue engineering, but it’s important to know what they can and cannot do. A new study by researchers at Rice University and Texas Children’s Hospital has shown that these stem cells can communicate with mature heart cells and form electrical couplings with each other similar to those found in heart tissue.

Study: Synthetic biology research community has grown significantly

May 1, 2013 10:02 am | News | Comments

Researchers at the Synthetic Biology Project at the Woodrow Wilson International Center for Scholars have recently reported that the number of private and public entities conducting research in synthetic biology worldwide grew significantly between 2009 and 2013. Their findings, which include more than 500 organizations, are tracked on an interactive online map.

Advertisement

Researchers turn skin cells directly into the cells that insulate neurons

April 15, 2013 1:00 pm | News | Comments

Stanford University School of Medicine scientists have succeeded in transforming skin cells directly into oligodendrocyte precursor cells, the cells that wrap nerve cells in the insulating myelin sheaths that help nerve signals propagate. The research was done in mice and rats, but if the approach also works with human cells, it could eventually lead to cell therapies for a variety of diseases of the nervous system.

Ordinary skin cells morphed into functional brain cells

April 15, 2013 12:11 pm | News | Comments

Researchers at Case Western Reserve School of Medicine have discovered a technique that directly converts skin cells to the type of brain cells destroyed in patients with multiple sclerosis and other so-called myelin disorders. This breakthrough now enables "on demand" production of myelinating cells, which provide a vital sheath of insulation that protects neurons and enables the delivery of brain impulses to the rest of the body.

Overcoming barriers to medical use of microrockets and micromotors

April 11, 2013 2:13 am | News | Comments

An advance in micromotor technology akin to the invention of cars that fuel themselves from the pavement or air, rather than gasoline or batteries, is opening the door to broad new medical and industrial uses for these tiny devices, scientists said here today. Their update on development of the motors—so small that thousands would fit inside this "o"—was part of the American Chemical Society national meeting.

Researchers engineer “protein switch” to dissect role of cancer's key players

April 10, 2013 12:45 pm | News | Comments

Scientists at the Uniersity of North Carolina at Chapel Hill School of Medicine have "rationally rewired" some of the cell's smallest components to create proteins that can be switched on or off by command. These "protein switches" can be used to interrogate the inner workings of each cell, helping scientists uncover the molecular mechanisms of human health and disease.  

Recruiting engineered cells to work for warfighters

April 10, 2013 12:22 pm | News | Comments

The Office of Naval Research (ONR) this week launched a collaborative initiative with university researchers focused on synthetic, or engineered, cells—part of a larger effort to use the smallest units of life to help Sailors and Marines execute their missions. ONR currently has multiple ongoing projects in the field of synthetic biology.

Advertisement

Exploring the ethics of resurrecting extinct species

April 8, 2013 6:09 pm | by Thomas Sumner and Bjorn Carey, Stanford University | News | Comments

At some point, scientists may be able to bring back extinct animals, and perhaps early humans, raising questions of ethics and environmental disruption. Stanford University law professor Hank Greely has recently identified the ethical landmines of this new concept of de-extinction.

Innovative method to treat Alzheimer's in mice

April 5, 2013 4:57 pm | News | Comments

Researchers from the RIKEN Brain Science Institute report that they successfully used a virus vector to restore the expression of a brain protein and improve cognitive functions, in a mouse model of Alzheimer's disease. Because it is impossible to deliver genes directly to the brain without surgery, the researchers injected the virus in the left ventricle of the heart, as this provides a direct route to the brain.

Building better blood vessels could advance tissue engineering

April 5, 2013 8:00 am | News | Comments

One of the major obstacles to growing new organs—replacement hearts, lungs, and kidneys—is the difficulty researchers face in building blood vessels that keep the tissues alive, but new findings from the University of Michigan could help overcome this roadblock.

Researchers find new way for plants to pass traits to next generation

March 26, 2013 12:50 pm | by Emily Caldwell, Ohio State University | News | Comments

Scientists have shown that an enzyme in corn responsible for reading information from DNA can prompt unexpected changes in gene activity—an example of epigenetics that breaks accepted rules of genetic behavior. Though some evidence has suggested that epigenetic changes can bypass DNA’s influence to carry on from one generation to the next, this is the first study to show that this epigenetic heritability can be subject to selective breeding.

Researchers discover third type of motor found in nature

March 20, 2013 3:21 pm | News | Comments

Scientists have cracked a 35-year-old mystery about the workings of a revolving molecular motor that is now serving as a model for development of a futuristic genre of synthetic nanomotors that pump therapeutic DNA, RNA, or drugs into individual diseased cells. Their report reveals the mechanisms of these nanomotors in a bacteria-killing virus—and a new way to move DNA through cells

Advertisement

Synthesized DNA catalysts do the work of protein enzymes

March 19, 2013 3:37 pm | News | Comments

Ideally, researchers would like to be able to design and build new catalysts from scratch that can do exactly what they want. However, designing—or even modifying—protein enzymes is a very difficult task. Illinois chemists have overcome the issues with size and complexity by using an artificially synthesized DNA sequence to do a protein’s job, creating opportunities for DNA to find work in more areas of biology, chemistry and medicine than ever before

Scientists use DNA to create nano-encrypted Morse code

March 12, 2013 3:17 pm | News | Comments

Researchers at the University of Illinois at Urbana-Champaign have devised a dynamic and reversible way to assemble nanoscale structures and have used it to encrypt a Morse code message. The team started with a template of DNA origami―multiple strands of DNA woven into a tile. They “wrote” their message in the DNA template by attaching biotin-bound DNA strands to specific locations on the tiles that would light up as dots or dashes. 

Scientists manipulate protein activity with newly found enzymes

March 11, 2013 8:43 am | News | Comments

Protein activity is strictly regulated. Incorrect or poor protein regulation can lead to uncontrolled growth and thus cancer or chronic inflammation. Researchers in Switzerland have identified enzymes that can regulate the activity of medically important proteins. Their discovery enables these proteins to be manipulated very selectively, opening up new treatment methods.

Scientists improve transgenic “Enviropigs”

March 8, 2013 3:48 pm | News | Comments

A research team in Europe has developed a new line of transgenic "Enviropigs." Enviropigs have genetically modified salivary glands, which help them digest phosphorus in feedstuffs and reduce phosphorus pollution in the environment. After developing the initial line of Enviropigs, researchers found that the line had certain genes that could be unstable. The new line of pigs is called the Cassie line, and it is known for passing genes on more reliably.

Flip of a single molecular switch makes an old brain young

March 6, 2013 3:38 pm | News | Comments

Scientists have long known that the young and old brains are very different. Adolescent brains are more malleable or plastic. The flip of a single molecular switch helps create the mature neuronal connections that allow the brain to bridge the gap between adolescent impressionability and adult stability. Now Yale School of Medicine researchers have reversed the process, recreating a youthful brain that facilitated both learning and healing in the adult mouse.

Biochemists gain insight into cell division

March 5, 2013 4:34 pm | News | Comments

Scientists at the University of Massachusetts Amherst, including assistant professor Peter Chien, recently gained new insight into how protein synthesis and degradation help to regulate the delicate ballet of cell division. In particular, they reveal how two proteins shelter each other in “mutually assured cleanup” to insure that division goes smoothly and safely.

Scientists engineer bacterial live wires

February 28, 2013 1:09 pm | News | Comments

Just like electronics, living cells use electrons for energy and information transfer. But cell membranes have thus far prevented us from “plugging” in cells to our computers. To get around this barrier that tightly controls charge balance, a research group at Lawrence Berkeley National Laboratory’s Molecular Foundry has engineered <em>E. coli</em> as a testbed for cellular-electrode communication. They have now demonstrated that these bacterial strains can generate measurable current at an anode.

“Fat worms” inch scientists toward better biofuel production

February 26, 2013 10:00 am | News | Comments

Researchers at Michigan State University have used use an algae gene involved in oil production to engineer a plant that stores lipids or vegetable oil in its leaves—an uncommon occurrence for most plants. To confirm that the improved plants were more nutritious and contained more energy, the research team fed them to caterpillar larvae. The larvae that were fed oily leaves from the enhanced plants gained more weight than worms that ate regular leaves.

Artificial platelets could treat injured soldiers on the battlefield

February 19, 2013 9:04 am | News | Comments

When it comes to healing the terrible wounds of war, success may hinge on the first blood clot—the one that begins forming on the battlefield right after an injury. Researchers exploring the complex stream of cellular signals produced by the body in response to a traumatic injury believe the initial response—formation of a blood clot—may control subsequent healing. Using that information, they're developing new biomaterials, including artificial blood platelets laced with regulatory chemicals that could be included in an injector device the size of an iPhone.

Avoiding virus dangers in “domesticating” wild plants for biofuel use

February 15, 2013 11:36 am | News | Comments

According to Michigan State University plant biologist Carolyn Malmstrom, when we start combining the qualities of different types of plants into one, there can be unanticipated results. In the domestication of wild plants for bioenergy, for example, long-lived plants are being selected for fast growth like annuals. In contrast, perennial plants in nature grow slower, but are usually better equipped to fight off invading viruses. When wild-growing perennials do get infected they can serve as reservoirs for viruses.

Researchers discover how a microbial biorefinery regulates genes

February 15, 2013 11:17 am | News | Comments

Digesting lignin, a highly stable polymer that accounts for up to a third of biomass, is a limiting step to producing a variety of biofuels. Researchers at Brown have figured out the microscopic chemical switch that allows Streptomyces bacteria to get to work, breaking lignin down into its constituent parts.

Engineers use light to control cell clustering

February 13, 2013 11:07 am | News | Comments

A new study from engineers at Rensselaer Polytechnic Institute and the University of California, Berkeley, pairs light and genetics to give researchers a powerful new tool for manipulating cells. The optogenetics breakthrough shows how blue light can be used as a switch to prompt targeted proteins to accumulate into large clusters. This clustering, or oligomerization, is commonly employed by nature to turn on or turn off specific signaling pathways used in cells’ complex system of communications.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading