Advertisement
Genetic Engineering
Subscribe to Genetic Engineering
View Sample

FREE Email Newsletter

Gene sequencing that everyone can afford

December 6, 2013 8:15 am | News | Comments

Researchers in China, working on the optimization of a third-generation sequencing technique based on nanopores, have found that long-chain DNA with low salt concentration is more conducive to the nanopore sequencing process. This finding may improve the efficiency of sequencing, and further low the cost of gene sequencing.

Scientists invent implantable slimming aid

November 27, 2013 6:22 am | by Peter Rüegg, ETH Zurich | News | Comments

A new innovation may help us deal with post-Thanksgiving guilt: Biotechnologists have constructed a genetic regulatory circuit from human components that monitors blood-fat levels. In response to excessive levels, it produces a messenger substance that signals satiety to the body. Tests on obese mice reveal that this helps them to lose weight.

Scientists find powerful tool for genetic engineering

November 22, 2013 10:54 am | News | Comments

Viruses can not only cause illnesses in humans, they also infect bacteria. Bacteria protect themselves with a kind of immune system that detects and “chops up” foreign DNA. Scientists have now shown that the dual-RNA guided enzyme Cas9 which is involved in the process has developed independently in various strains of bacteria. This enhances the potential of exploiting the bacterial immune system for genome engineering.

Advertisement

Researchers manipulate virus to create possible new cancer treatment

November 11, 2013 3:01 pm | by Elizabeth K. Gardner, Purdue Univ. | News | Comments

Purdue Univ. researchers have successfully eliminated the native infection preferences of a Sindbis virus engineered to target and kill cancer cells, a milestone in the manipulation of this promising viral vector. The achievement also demonstrates the ability to use methods of manipulation previously only applied to proteins.

Cause of genetic disorder found in “dark matter” of DNA

November 11, 2013 10:16 am | News | Comments

For the first time, scientists have used new technology which analyzes the whole genome to find the cause of a genetic disease in what was previously referred to as “junk DNA”. This genomic “dark matter” does not contain genes and accounts for 99% of the human genome. Instead, it is responsible for making sure that genes are “switched on” at the right time and in the right part of the body.

Genetic mutation link to eczema discovered

November 8, 2013 12:00 pm | News | Comments

Scientists collaborating on an international research project led by Trinity College Dublin and the University of Dundee have identified a new genetic mutation linked to the development of a type of eczema known as atopic dermatitis. They found that a mutation in the gene Matt/Tmem79 led to the development of spontaneous dermatitis in mice.

Scientists solve major piece in the origin of biological complexity

November 6, 2013 11:25 am | News | Comments

Scientists have puzzled for centuries over how and why multicellular organisms evolved the almost universal trait of using single cells, such as eggs and sperm, to reproduce. Now, researchers have set a big piece of that puzzle into place by applying experimental evolution to transform a single-celled algae into a multicellular one that reproduces by dispersing single cells.

Vitamin boost for 3-D printing

October 23, 2013 7:52 am | News | Comments

Researchers from North Carolina State Univ., the Univ. of North Carolina at Chapel Hill and Laser Zentrum Hannover have discovered that a naturally occurring compound can be incorporated into 3-D printing processes to create medical implants out of non-toxic polymers. The compound is riboflavin, which is better known as vitamin B2.

Advertisement

Radical recoding tests limits of genetic reprogramming

October 17, 2013 2:33 pm | News | Comments

In two parallel projects, researchers at the Wyss Institute for Biologically Inspired Engineering have created new genomes inside the bacterium E. coli in ways that could open new possibilities for increasing flexibility, productivity and safety in biotechnology. In the first project, researchers created a novel genome, the first-ever entirely genomically recoded organism. They then greatly expanded genetic changes in the second project.

Glowing neurons reveal networked link between brain, whiskers

October 16, 2013 11:04 am | News | Comments

Human fingertips have several types of sensory neurons that are responsible for relaying touch signals to the central nervous system. Scientists have long believed these neurons followed a linear path to the brain with a "labeled-lines" structure. But new research on mouse whiskers reveals a surprise: At the fine scale, the sensory system's wiring diagram doesn't have a set pattern.

Small bits of genetic material fight cancer's spread

October 15, 2013 2:08 pm | by Tara Thean, Princeton Univ. | News | Comments

Researchers at Princeton Univ. have found that microRNAs, which are small bits of genetic material capable of repressing the expression of certain genes, may serve as both therapeutic targets and predictors of metastasis, or a cancer’s spread from its initial site to other parts of the body.

Researchers identify the neural circuits that modulate REM sleep

October 3, 2013 11:58 am | News | Comments

Previous studies had established an association between the activity of certain types of neurons and the phase of sleep known as rapid eye movement (REM). Scientists have now found the source of this causal relationship and have used optogenetics techniques to induce and modulate REM sleep in mice.

DNA glue directs tiny gel “bricks” to self-assemble

September 9, 2013 11:39 am | by Dan Ferber, Wyss Institute Communications | News | Comments

A team of researchers at Harvard Univ. has found a way to self-assemble complex structures out of gel “bricks” smaller than a grain of salt. The new method could help solve one of the major challenges in tissue engineering: creating injectable components that self-assemble into intricately structured, biocompatible scaffolds at an injury site to help regrow human tissues.

Advertisement

Blue-green algae a five-tool player in converting waste to fuel

September 6, 2013 10:08 am | by Tony Fitzpatrick, WUSTL | News | Comments

In the parallel universe of the microbiological world, there is a current superstar species of blue-green algae that, through its powers of photosynthesis and carbon dioxide fixation, or uptake, can produce (count ’em) ethanol, hydrogen, butanol, isobutanol and potentially biodiesel. Called Synechocystis 6803, it also has the potential to make commodity chemicals and pharmaceuticals.

Single gene change increases mouse lifespan by 20%

August 29, 2013 4:50 pm | News | Comments

By lowering the expression of a single gene, researchers at the National Institutes of Health have extended the average lifespan of a group of mice by about 20%—the equivalent of raising the average human lifespan by 16 years. The research team targeted a gene called mTOR, which is involved in metabolism and energy balance, and may be connected with the increased lifespan associated with caloric restriction.

Team "spikes" stem cells to generate myelin

August 28, 2013 2:16 pm | News | Comments

Stem cell technology has long offered the hope of regenerating tissue to repair broken or damaged neural tissue. Findings from a team of Univ. of California, Davis investigators have brought this dream a step closer by developing a method to generate functioning brain cells that produce myelin, the fatty, insulating sheath essential to normal neural conduction.

Scientists find way to predict and control gene expression

August 20, 2013 5:20 pm | News | Comments

Researchers in Switzerland have developed a “guide” that can be used to precisely predict the number of proteins a given gene will produce under varying conditions. Each gene has a segment of DNA at its beginning called a promoter, and the researchers generated more than 200 of them, integrated them into a yeast genome, and conducted comparative analysis that generated a model. This work will help biologists to engineer cells.

“Smart” nanoparticles to improve drug delivery, DNA self-assembly

August 12, 2013 3:39 pm | by Rob Enslin, Syracuse Univ. | News | Comments

A team of chemists at Syracuse Univ. has used a temperature-sensitive polymer to regulate DNA interactions in both a DNA-mediated assembly system and a DNA-encoded drug-delivery system. Their findings may improve how nanomaterials self-assemble into functional devices and how anticancer drugs, including doxorubicin, are delivered into the body.

Researchers write rules for gene-therapy vectors

August 12, 2013 8:01 am | News | Comments

Rice Univ. researchers are making strides toward a set of rules to custom-design Lego-like viral capsid proteins for gene therapy. A recent paper details the team's use of computational and bioengineering methods to combine pieces of very different adeno-associated viruses (AAVs) to create new, benign viruses that can deliver DNA payloads to specific cells.

Feds, family reach deal on use of DNA information

August 9, 2013 8:13 am | by Malcolm Ritter, AP Science Writer | News | Comments

Some 60 years ago, a doctor in Baltimore removed cancer cells from a poor black patient named Henrietta Lacks without her knowledge or consent. Those cells eventually helped lead to a multitude of medical treatments and lay the groundwork for the multibillion-dollar biotech industry. Now, for the first time, the Lacks family has been given a say over at least some research involving her cells.

DNA robots find and tag blood cells

August 8, 2013 8:00 am | News | Comments

Researchers at Columbia Univ. Medical Center, working with their collaborators at the Hospital for Special Surgery, have created a fleet of molecular “robots” that can home in on specific human cells and mark them for drug therapy or destruction. The nanorobots—a collection of DNA molecules, some attached to antibodies—were designed to seek a specific set of human blood cells and attach a fluorescent tag to the cell surfaces.

Scientists plan controversial lab-made bird flu

August 7, 2013 1:25 pm | by LAURAN NEERGAARD - AP Medical Writer - Associated Press | News | Comments

Scientists who sparked an outcry by creating easier-to-spread versions of the bird flu want to try such experiments again using a worrisome new strain known as H7N9. Since it broke out in China in March, the bird flu strain has infected more than 130 people and killed 43. Researchers say that genetically engineering this virus in the lab could help track whether it's changing in the wild to become a bigger threat.

Laser method allows DNA to be inserted gently into living cells

August 7, 2013 12:08 pm | News | Comments

A team of scientists in South Korea have recently developed the most precise method ever used to accomplish a typically messy, clumsy process: inserting DNA into living cells. It combines two high-tech laboratory techniques and allows the researchers to precisely poke holes on the surface of a single cell with a high-powered femtosecond laser and then gently tug a piece of DNA through it using optical tweezers.

Scientists serve lab-made burger from cow cells

August 5, 2013 10:56 am | by Maria Cheng, AP Medical Writer | News | Comments

Two volunteer taste-testers in London got the unusual opportunity of sampling a stem-cell burger. Though it was reportedly short on taste, the burger represents five years of research. Made from meat grown in a laboratory from the stem cells of cattle, the the burger is part of an effort to help solve both the food crisis and climate change.

Molecular robots help researchers build more targeted therapeutics

July 29, 2013 1:55 pm | News | Comments

Many drugs such as agents for cancer or autoimmune diseases have nasty side effects because while they kill disease-causing cells, they also affect healthy cells. Now a new study has demonstrated a technique for developing more targeted drugs, by using molecular “robots” to hone in on more specific populations of cells.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading