Advertisement
Genetic Engineering
Subscribe to Genetic Engineering
View Sample

FREE Email Newsletter

New technique will accelerate genetic characterization of photosynthesis

April 16, 2014 9:12 am | News | Comments

A type of single-cell green algae called Chlamydomonas reinhardtii is a leading subject for photosynthesis research, but few tools are available for characterizing the functions of its genes. A team including Carnegie Institution's Martin Jonikas has developed a highly sophisticated tool that will transform the work of plant geneticists by making large-scale genetic characterization of Chlamydomonas mutants possible for the first time.

Synthetic collagen promotes natural clotting

April 10, 2014 8:04 am | News | Comments

Synthetic collagen invented at Rice Univ. may help wounds heal by directing the natural clotting of blood. The material, KOD, mimics natural collagen, a fibrous protein that binds cells together into organs and tissues. It could improve upon commercial sponges or therapies based on naturally derived porcine or bovine-derived collagen now used to aid healing during or after surgery.

Noses, made in Britain: UK touts lab-grown organs

April 9, 2014 3:12 pm | by Maria Cheng, AP Medical Writer | News | Comments

In a north London hospital, scientists are growing noses, ears and blood vessels in a bold attempt to make body parts in the laboratory. It's far from the only laboratory in the world that is growing organs for potential transplant. But the London work was showcased this week hints at the availability of more types of body parts, including what would be the world's first nose made partly from stem cells.

Advertisement

Synthetic gene circuits pump up cell signals

April 8, 2014 7:56 am | News | Comments

Synthetic genetic circuitry created by researchers at Rice Univ. is helping them see, for the first time, how to regulate cell mechanisms that degrade the misfolded proteins implicated in Parkinson’s, Huntington’s and other diseases. The Rice team has designed a sophisticated circuit that signals increases in the degradation of proteins by the cell’s ubiquitin proteasome system (UPS).

Team finds a better way to grow motor neurons from stem cells

April 1, 2014 3:39 pm | News | Comments

Researchers have reported they can generate human motor neurons from stem cells much more quickly and efficiently than previous methods allowed. The new method involves adding critical signaling molecules to precursor cells a few days earlier than previous methods specified. This increases the proportion of healthy motor neurons derived from stem cells (from 30 to 70%) and cuts in half the time required to do so.

Scientists identify genes that could lead to tough, disease-resistant rice

April 1, 2014 3:28 pm | by Marcia Goodrich, Michigan Technological Univ. | News | Comments

As the Earth’s human population marches toward 9 billion, the need for hardy new varieties of grain crops has never been greater. It won’t be enough to yield record harvests under perfect conditions; new grains must also be able to handle stress from climate changes. Researchers in Michigan have recently identified a set of genes that could be key to the development of the next generation of super rice.

Plasma tool used to destroy cancer cells

March 25, 2014 1:19 pm | News | Comments

Adopted a common technique used in biochemistry, called agarose gel electrophoresis, researchers have investigated the damage to DNA that might have been caused by use of an atmospheric pressure plasma jet. This qualitative and quantitative study could ultimately lead to plasma-based tools for cancer therapy or hospital hygiene and other purposes.

Engineers design “living materials”

March 24, 2014 9:45 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology engineers have coaxed bacterial cells to produce biofilms that can incorporate non-living materials, such as gold nanoparticles and quantum dots. These “living materials” combine the advantages of live cells, which respond to their environment and produce complex biological molecules, with the benefits of nonliving materials, which add functions such as conducting electricity or emitting light.

Advertisement

Discovery could yield more efficient plants for biofuels

March 18, 2014 8:16 am | by Natalie van Hoose, Purdue Univ. | News | Comments

Genetically modifying a key protein complex in plants could lead to improved crops for the production of cellulosic biofuels, a Purdue Univ. study says. The researchers generated a mutant Arabidopsis plant whose cell walls can be converted easily into fermentable sugars, but doesn't display the stunted growth patterns of similar mutants.

Bacterial reporters that get the scoop

March 18, 2014 7:55 am | by Kristen Kusek, Wyss Institute for Biologically Inspired Engineering, Harvard Univ. | News | Comments

It's a jungle in there. In the tightly woven ecosystem of the human gut, trillions of bacteria compete with each other on a daily basis while they sense and react to signals from the immune system, ingested food and other bacteria. Problems arise when bad gut bugs overtake friendly ones, or when the immune system is thrown off balance.

Big data tackles tiny molecular machines

March 14, 2014 12:11 pm | News | Comments

Biophysicists at Rice Univ. have used a miniscule machine, a protease called an FtsH-AAA hexameric peptidase, as a model to test calculations that combine genetic and structural data. Their goal is to solve one of the most compelling mysteries in biology: how proteins perform the regulatory mechanisms in cells upon which life depends.

Roomy cages built from DNA

March 14, 2014 11:48 am | News | Comments

Move over, nanotechnologists, and make room for the biggest of the small. Scientists at the Harvard's Wyss Institute have built a set of self-assembling DNA cages one-tenth as wide as a bacterium. The structures are some of the largest and most complex structures ever constructed solely from DNA.

Researchers write languages to design synthetic living systems

March 14, 2014 10:08 am | by Emily Kale, Virginia Tech | News | Comments

A computer-aided design tool has been used by researchers at Virginia Tech and the Massachusetts Institute of Technology to create genetic languages to guide the design of biological systems. Known as GenoCAD, the open-source software was developed to help synthetic biologists capture biological rules to engineer organisms that produce useful products or health-care solutions from inexpensive, renewable materials.

Advertisement

Scientists “herd” cells in new approach to tissue engineering

March 12, 2014 8:08 am | by Sarah Yang, Media Relations, UC Berkeley | Videos | Comments

Sometimes it only takes a quick jolt of electricity to get a swarm of cells moving in the right direction. Researchers at the Univ. of California, Berkeley found that an electrical current can be used to orchestrate the flow of a group of cells, an achievement that could establish the basis for more controlled forms of tissue engineering.

Laboratory in Japan weighs retraction of stem cell paper

March 11, 2014 10:39 am | by Mari Yamaguchi, Associated Press | News | Comments

The Riken Center for Development Biology in Kobe, Japan, has been looking into questions raised over images and wording in a research paper describing a simple way of turning ordinary cells from mice into stem cells. Riken said Tuesday that it may retract the paper because of credibility and ethics issues, even though an investigation is continuing.

Sweet smell of sustainability

March 11, 2014 8:34 am | by Andy Fell, UC Davis News Service | News | Comments

Fresh banana, a waft of flowers, blueberry: the scents in Shota Atsumi's laboratory in the Univ. of California, Davis Dept. of Chemistry are a little sweeter than most. That's because Atsumi and his team are engineering bacteria to make esters, molecules widely used as scents and flavorings, and also as basic feedstock for chemical processes from paints to fuels.

Synthetic biologists shine light on genetic circuit analysis

March 10, 2014 7:56 am | Videos | Comments

In a significant advance for the growing field of synthetic biology, Rice Univ. bioengineers have created a toolkit of genes and hardware that uses colored lights and engineered bacteria to bring both mathematical predictability and cut-and-paste simplicity to the world of genetic circuit design.

FDA weighs unknowns of 3-person embryo technique

February 26, 2014 10:42 am | by Matthew Perrone, AP Health Writer | News | Comments

At a recent two-day meeting, the Food and Drug Administration heard from supporters and opponents of a provocative new technique meant to prevent children from inheriting debilitating diseases. The method creates babies from the DNA of three people, and the agency is considering whether to greenlight testing in women who have defective genes.

Meet your match: Algorithms to spark scientific collaboration

February 21, 2014 10:33 am | News | Comments

Scientists in the U.K. have developed a novel approach to enabling collaborations between researchers at conferences and academic meetings: Treat them like genes. Using mathematical algorithms, the team created a method of matching conference-goers according to pre-set criteria, bringing about unforeseen collaboration opportunities while also enabling “would-like-to-meet” match-ups across disciplines and knowledge areas.

Whole genome analysis, stat

February 19, 2014 11:19 pm | News | Comments

The time and cost of sequencing an entire human genome has plummeted, but analyzing three billion base pairs from a single genome can take many months. However, a Univ. of Chicago-based team working with Beagle, one of the world's fastest supercomputers devoted to life sciences, reports that genome analysis can be radically accelerated. The Argonne National Laboratory computer is able to analyze 240 full genomes in about two days.

An essential step toward printing living tissues

February 19, 2014 9:29 am | News | Comments

A new bioprinting method developed at the Wyss Institute for Biologically Inspired Engineering at Harvard Univ. creates intricately patterned 3-D tissue constructs with multiple types of cells and tiny blood vessels. The work represents a major step toward a longstanding goal of tissue engineers: creating human tissue constructs realistic enough to test drug safety and effectiveness.

New advance in 3-D printing and tissue engineering technology

February 11, 2014 8:46 am | News | Comments

Researchers have introduced a unique microrobotic technique to assemble the components of complex materials, the foundation of tissue engineering and 3-D printing. Tissue engineering and 3-D printing have become vitally important to the future of medicine for many reasons. The shortage of available organs for transplantation, for example, leaves many patients on waiting lists for life-saving treatment.

New application of physics tools used in biology

February 10, 2014 7:43 am | by Anne M. Stark, Livermore Lab | News | Comments

A team of physicists have used statistical mechanics and mathematical modeling to shed light on something known as epigenetic memory, which allows an organism to create a biological memory of some variable condition, such as quality of nutrition or temperature. The model highlights the "engineering" challenge a cell must constantly face during molecular recognition.

Genome editing goes hi-fi

February 10, 2014 7:42 am | News | Comments

A one-letter change in the human genetic code can sometimes mean the difference between health and a serious disease. But replicating these tiny changes in human stem cells has proven challenging. Scientists at the Gladstone Institutes have found a way to efficiently edit the human genome one letter at a time, not only boosting researchers' ability to model human disease, but also paving the way for new therapies.

Optogenetic toolkit goes multicolor

February 10, 2014 7:39 am | News | Comments

Optogenetics allows scientists to control neurons’ electrical activity with light by engineering them to express light-sensitive proteins, called opsins. Most opsins respond to light in the blue-green range. Now, a team has discovered an opsin that is sensitive to red light, which allows researchers to independently control the activity of two populations of neurons at once, enabling much more complex studies of brain function.  

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading