Advertisement
Genetic Engineering
Subscribe to Genetic Engineering

The Lead

New technique will accelerate genetic characterization of photosynthesis

April 16, 2014 9:12 am | News | Comments

A type of single-cell green algae called Chlamydomonas reinhardtii is a leading subject for photosynthesis research, but few tools are available for characterizing the functions of its genes. A team including Carnegie Institution's Martin Jonikas has developed a highly sophisticated tool that will transform the work of plant geneticists by making large-scale genetic characterization of Chlamydomonas mutants possible for the first time.

Synthetic collagen promotes natural clotting

April 10, 2014 8:04 am | News | Comments

Synthetic collagen invented at Rice Univ. may help wounds heal by directing the natural clotting...

Noses, made in Britain: UK touts lab-grown organs

April 9, 2014 3:12 pm | by Maria Cheng, AP Medical Writer | News | Comments

In a north London hospital, scientists are growing...

Synthetic gene circuits pump up cell signals

April 8, 2014 7:56 am | News | Comments

Synthetic genetic circuitry created by researchers at Rice Univ. is helping them...

View Sample

FREE Email Newsletter

Team finds a better way to grow motor neurons from stem cells

April 1, 2014 3:39 pm | News | Comments

Researchers have reported they can generate human motor neurons from stem cells much more quickly and efficiently than previous methods allowed. The new method involves adding critical signaling molecules to precursor cells a few days earlier than previous methods specified. This increases the proportion of healthy motor neurons derived from stem cells (from 30 to 70%) and cuts in half the time required to do so.

Scientists identify genes that could lead to tough, disease-resistant rice

April 1, 2014 3:28 pm | by Marcia Goodrich, Michigan Technological Univ. | News | Comments

As the Earth’s human population marches toward 9 billion, the need for hardy new varieties of grain crops has never been greater. It won’t be enough to yield record harvests under perfect conditions; new grains must also be able to handle stress from climate changes. Researchers in Michigan have recently identified a set of genes that could be key to the development of the next generation of super rice.

Plasma tool used to destroy cancer cells

March 25, 2014 1:19 pm | News | Comments

Adopted a common technique used in biochemistry, called agarose gel electrophoresis, researchers have investigated the damage to DNA that might have been caused by use of an atmospheric pressure plasma jet. This qualitative and quantitative study could ultimately lead to plasma-based tools for cancer therapy or hospital hygiene and other purposes.

Advertisement

Engineers design “living materials”

March 24, 2014 9:45 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology engineers have coaxed bacterial cells to produce biofilms that can incorporate non-living materials, such as gold nanoparticles and quantum dots. These “living materials” combine the advantages of live cells, which respond to their environment and produce complex biological molecules, with the benefits of nonliving materials, which add functions such as conducting electricity or emitting light.

Discovery could yield more efficient plants for biofuels

March 18, 2014 8:16 am | by Natalie van Hoose, Purdue Univ. | News | Comments

Genetically modifying a key protein complex in plants could lead to improved crops for the production of cellulosic biofuels, a Purdue Univ. study says. The researchers generated a mutant Arabidopsis plant whose cell walls can be converted easily into fermentable sugars, but doesn't display the stunted growth patterns of similar mutants.

Bacterial reporters that get the scoop

March 18, 2014 7:55 am | by Kristen Kusek, Wyss Institute for Biologically Inspired Engineering, Harvard Univ. | News | Comments

It's a jungle in there. In the tightly woven ecosystem of the human gut, trillions of bacteria compete with each other on a daily basis while they sense and react to signals from the immune system, ingested food and other bacteria. Problems arise when bad gut bugs overtake friendly ones, or when the immune system is thrown off balance.

Big data tackles tiny molecular machines

March 14, 2014 12:11 pm | News | Comments

Biophysicists at Rice Univ. have used a miniscule machine, a protease called an FtsH-AAA hexameric peptidase, as a model to test calculations that combine genetic and structural data. Their goal is to solve one of the most compelling mysteries in biology: how proteins perform the regulatory mechanisms in cells upon which life depends.

Roomy cages built from DNA

March 14, 2014 11:48 am | News | Comments

Move over, nanotechnologists, and make room for the biggest of the small. Scientists at the Harvard's Wyss Institute have built a set of self-assembling DNA cages one-tenth as wide as a bacterium. The structures are some of the largest and most complex structures ever constructed solely from DNA.

Advertisement

Researchers write languages to design synthetic living systems

March 14, 2014 10:08 am | by Emily Kale, Virginia Tech | News | Comments

A computer-aided design tool has been used by researchers at Virginia Tech and the Massachusetts Institute of Technology to create genetic languages to guide the design of biological systems. Known as GenoCAD, the open-source software was developed to help synthetic biologists capture biological rules to engineer organisms that produce useful products or health-care solutions from inexpensive, renewable materials.

Scientists “herd” cells in new approach to tissue engineering

March 12, 2014 8:08 am | by Sarah Yang, Media Relations, UC Berkeley | Videos | Comments

Sometimes it only takes a quick jolt of electricity to get a swarm of cells moving in the right direction. Researchers at the Univ. of California, Berkeley found that an electrical current can be used to orchestrate the flow of a group of cells, an achievement that could establish the basis for more controlled forms of tissue engineering.

Laboratory in Japan weighs retraction of stem cell paper

March 11, 2014 10:39 am | by Mari Yamaguchi, Associated Press | News | Comments

The Riken Center for Development Biology in Kobe, Japan, has been looking into questions raised over images and wording in a research paper describing a simple way of turning ordinary cells from mice into stem cells. Riken said Tuesday that it may retract the paper because of credibility and ethics issues, even though an investigation is continuing.

Sweet smell of sustainability

March 11, 2014 8:34 am | by Andy Fell, UC Davis News Service | News | Comments

Fresh banana, a waft of flowers, blueberry: the scents in Shota Atsumi's laboratory in the Univ. of California, Davis Dept. of Chemistry are a little sweeter than most. That's because Atsumi and his team are engineering bacteria to make esters, molecules widely used as scents and flavorings, and also as basic feedstock for chemical processes from paints to fuels.

Synthetic biologists shine light on genetic circuit analysis

March 10, 2014 7:56 am | Videos | Comments

In a significant advance for the growing field of synthetic biology, Rice Univ. bioengineers have created a toolkit of genes and hardware that uses colored lights and engineered bacteria to bring both mathematical predictability and cut-and-paste simplicity to the world of genetic circuit design.

Advertisement

FDA weighs unknowns of 3-person embryo technique

February 26, 2014 10:42 am | by Matthew Perrone, AP Health Writer | News | Comments

At a recent two-day meeting, the Food and Drug Administration heard from supporters and opponents of a provocative new technique meant to prevent children from inheriting debilitating diseases. The method creates babies from the DNA of three people, and the agency is considering whether to greenlight testing in women who have defective genes.

Meet your match: Algorithms to spark scientific collaboration

February 21, 2014 10:33 am | News | Comments

Scientists in the U.K. have developed a novel approach to enabling collaborations between researchers at conferences and academic meetings: Treat them like genes. Using mathematical algorithms, the team created a method of matching conference-goers according to pre-set criteria, bringing about unforeseen collaboration opportunities while also enabling “would-like-to-meet” match-ups across disciplines and knowledge areas.

Whole genome analysis, stat

February 19, 2014 11:19 pm | News | Comments

The time and cost of sequencing an entire human genome has plummeted, but analyzing three billion base pairs from a single genome can take many months. However, a Univ. of Chicago-based team working with Beagle, one of the world's fastest supercomputers devoted to life sciences, reports that genome analysis can be radically accelerated. The Argonne National Laboratory computer is able to analyze 240 full genomes in about two days.

An essential step toward printing living tissues

February 19, 2014 9:29 am | News | Comments

A new bioprinting method developed at the Wyss Institute for Biologically Inspired Engineering at Harvard Univ. creates intricately patterned 3-D tissue constructs with multiple types of cells and tiny blood vessels. The work represents a major step toward a longstanding goal of tissue engineers: creating human tissue constructs realistic enough to test drug safety and effectiveness.

New advance in 3-D printing and tissue engineering technology

February 11, 2014 8:46 am | News | Comments

Researchers have introduced a unique microrobotic technique to assemble the components of complex materials, the foundation of tissue engineering and 3-D printing. Tissue engineering and 3-D printing have become vitally important to the future of medicine for many reasons. The shortage of available organs for transplantation, for example, leaves many patients on waiting lists for life-saving treatment.

New application of physics tools used in biology

February 10, 2014 7:43 am | by Anne M. Stark, Livermore Lab | News | Comments

A team of physicists have used statistical mechanics and mathematical modeling to shed light on something known as epigenetic memory, which allows an organism to create a biological memory of some variable condition, such as quality of nutrition or temperature. The model highlights the "engineering" challenge a cell must constantly face during molecular recognition.

Genome editing goes hi-fi

February 10, 2014 7:42 am | News | Comments

A one-letter change in the human genetic code can sometimes mean the difference between health and a serious disease. But replicating these tiny changes in human stem cells has proven challenging. Scientists at the Gladstone Institutes have found a way to efficiently edit the human genome one letter at a time, not only boosting researchers' ability to model human disease, but also paving the way for new therapies.

Optogenetic toolkit goes multicolor

February 10, 2014 7:39 am | News | Comments

Optogenetics allows scientists to control neurons’ electrical activity with light by engineering them to express light-sensitive proteins, called opsins. Most opsins respond to light in the blue-green range. Now, a team has discovered an opsin that is sensitive to red light, which allows researchers to independently control the activity of two populations of neurons at once, enabling much more complex studies of brain function.  

Targeted Healing of the Immune System

February 9, 2014 10:00 am | by Lindsay Hock, Managing Editor | Articles | Comments

In the U.S. about 12,500 women are diagnosed with cervical cancer a year. Out of these women, about 4,500 progress into invasive cervical cancer or the end stage of the disease. This leaves about 8,000 women a year in the U.S. that are cured through existing standard of care treatment: surgery or chemotherapy/radiation. However, chemotherapy/radiation have terrible side effects in some cases.

Inner workings of a cellular nanomotor revealed

February 5, 2014 9:13 am | News | Comments

Our cells produce thousands of proteins, but more than one-third of these proteins can fulfill their function only after migrating to the outside of the cell. While it is known that protein migration occurs with the help of various “nanomotors” that push proteins out of the cell, little is known about their precise mechanical functioning. New research reveals the inner workings of one such nanomotor, called SecA, with new clarity.

Zebra fish fins help researchers gain insight into bone regeneration

January 31, 2014 9:05 am | News | Comments

Univ. of Oregon biologists say they have opened the window on the natural process of bone regeneration in zebra fish, and that the insights they gained could be used to advance therapies for bone fractures and disease. Their work shows that two molecular pathways work in concert to allow adult zebra fish to perfectly replace bones lost upon fin amputation.

Self-aligning DNA wires have been constructed for nanoelectronics

January 30, 2014 11:46 am | News | Comments

Continuous miniaturization in microelectronics is nearing physical limits, so researchers are seeking new methods for device fabrication. One promising candidate is a DNA origami technique in which individual strands of the biomolecule self-assemble into arbitrarily-shaped nanostructures. A new simpler strategy combines DNA origami with self-organized pattern formation to do away with elaborate procedures for positioning DNA structures.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading