Advertisement
Genetic Engineering
Subscribe to Genetic Engineering

The Lead

Water “thermostat” could help engineer drought-resistant crops

August 28, 2014 8:58 am | News | Comments

Duke Univ. researchers have identified a gene that could help scientists engineer drought-resistant crops. The gene, called OSCA1, encodes a protein in the cell membrane of plants that senses changes in water availability and adjusts the plant’s water conservation machinery accordingly. The effect is similar to a thermostat.

Living organ grown from lab-created cells

August 25, 2014 2:25 pm | Videos | Comments

Laboratory-grown replacement organs have moved a...

Efficient Bioengineering

August 22, 2014 2:50 pm | Award Winners

Lawrence Berkeley National Laboratory’s Tissue-Specific Cell-Wall...

Engineering new bone growth

August 19, 2014 7:56 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology chemical engineers have devised a new implantable tissue...

View Sample

FREE Email Newsletter

New gene editing method may help correct muscular dystrophy

August 15, 2014 8:56 am | News | Comments

Researchers in Texas have successfully used a new gene editing method to correct a mutation that leads to Duchenne muscular dystrophy (DMD) in a mouse model of the condition. The technique is called CRISPR/Cas9-mediated genome editing, and can precisely remove a mutation in DNA, allowing the body’s DNA repair mechanisms to replace it with a normal copy of the gene.

Scientists create remote-controlled nanoscale protein motors

August 6, 2014 9:58 am | by Shara Tonn, Stanford Univ. | News | Comments

To help them further the study of cell function, a team of Stanford Univ. bioengineers has designed a suite of protein motors that can be controlled remotely by light. Splicing together DNA from different organisms such as pig, slime mold and oat, which has a light-detecting module, the team created DNA codes for each of their protein motors. When exposed to light, the new protein motors change direction or speed.

New tools advance bio-logic

August 4, 2014 8:21 am | by Mike Williams, Rice Univ. | News | Comments

Researchers at Rice Univ. and the Univ. of Kansas Medical Center are making genetic circuits that can perform more complex tasks by swapping protein building blocks. The modular genetic circuits engineered from parts of otherwise unrelated bacterial genomes can be set up to handle multiple chemical inputs simultaneously with a minimum of interference from their neighbors.

Advertisement

Biologists describe mechanism promoting multiple DNA mutations

July 30, 2014 4:49 pm | by Gart Galluzzo, Univ. of Iowa | News | Comments

DNA mutations had been thought to be rare events that occur randomly throughout the genome. However, recent studies have shown that cancer development frequently involves the formation of multiple mutations that arise simultaneously and in close proximity to each other. These groups of clustered mutations are frequently found in regions where chromosomal rearrangements take place.

Researchers develop more efficient tool for tagging proteins

July 29, 2014 9:18 am | by Janne Hansen, Aarhus Univ. | News | Comments

DNA–protein conjugates can be used in diagnostic techniques, nanotechnology and other disciplines, but controlling the conjugation of these macromolecules can be a challenge. Scientists in Denmark have pioneered an easier method that makes it possible to direct the tagging of proteins with DNA to a particular site on the protein without genetically modifying the protein beforehand.

Genetic mapping triggers new hope on schizophrenia

July 23, 2014 9:27 am | by Seth Borenstein, AP Science Writer | News | Comments

More than 100 researchers from around the world have collaborated in the biggest-ever genomic mapping of schizophrenia, for which scientists had previously uncovered only about a couple of dozen risk-related genes. Since this research began, scientists have linked more than 100 spots in our DNA to the risk of developing schizophrenia, casting light on the mystery of what makes the disease tick.

DNA used as a lightswitch

July 21, 2014 9:12 am | News | Comments

Using two thin, tiny gold nanorods 10,000 times thinner than a human hair, researchers from the U.S. and Germany have succeeded in creating an adjustable filter for so-called circularly polarized light. This switch for nano-optics is made from two tiny gold rods that reversibly change their optical properties when specific DNA molecules are added.

National Xenopus Resource at MBL innovates new way to study proteins

July 17, 2014 10:45 am | by Laurel Hamers, Marine Biological Laboratory | News | Comments

Many organisms that hold potential for proteomic analysis do not yet have a completely sequenced genome because the costs are prohibitive. Xenopus laevis, the African clawed frog, is one such species. Researchers at the Marine Biological Laboratory have found a work-around. Instead of relying on DNA, they used mRNA sequences to more efficiently create a reference database that can be used for proteomic analysis of Xenopus.

Advertisement

DNA origami nano-tool provides important clue to cancer

July 7, 2014 9:26 am | News | Comments

Researchers in Sweden have headed a study that provides new knowledge about the EphA2 receptor, which is significant in several forms of cancer. The researchers employed the method of DNA origami, in which a DNA molecule is shaped into a nanostructure, and used these structures to test theories about cell signalling.

Fluorescent molecular rotors could help find anti-cancer drugs

July 2, 2014 12:13 pm | News | Comments

Researchers have already used molecular rotors as viscosity sensor probes in live cells, but a recent study in Singapore is the first to report on the use of fluorescent molecular rotors to study critical protein interactions.

Reconstructing the life history of a single cell

June 30, 2014 2:26 pm | News | Comments

Researchers have developed new methods to trace the life history of individual cells back to their origins in the fertilized egg. By looking at the copy of the human genome present in healthy cells, and by looking at the numbers and types of mutations in a cell's DNA, biologists in the U.K. have been able to build a picture of each cell's development from the early embryo on its journey to become part of an adult organ.

New light-sensitive protein enables simpler, more powerful optogenetics

June 30, 2014 9:14 am | by Anne Trafton, MIT | News | Comments

Optogenetics relies on light-sensitive proteins that can suppress or stimulate electrical signals within cells. This technique requires a light source to be implanted in the brain, where it can reach the cells to be controlled. Massachusetts Institute of Technology engineers have now developed the first light-sensitive molecule that enables neurons to be silenced noninvasively, using a light source outside the skull.

Sequencing efforts miss DNA crucial to bacteria’s disease causing power

June 25, 2014 10:41 pm | News | Comments

Genomic sequencing is supposed to reveal the entire genetic makeup of an organism. The technology can be used to analyze a disease-causing bacterium to determine how much harm it is capable of causing. But new research at Rockefeller Univ. suggests that current sequencing protocols overlook crucial bits of information: isolated pieces of DNA floating outside the bacterial chromosome, the core of a cell’s genetic material.

Advertisement

Common bean genome sequence may help improve critical food crop

June 9, 2014 10:43 am | News | Comments

An international collaboration of researchers have sequenced and analyzed the genome of the common bean to begin to identify genes involved in critical traits such as size, flavor, disease resistance and drought tolerance. They learned that, unlike most other food crops, the common bean was domesticated twice by humans about 8,000 years ago. The results of the study may help guide modern breeding programs.

All-natural mixture yields promising fire retardant

June 6, 2014 9:29 am | News | Comments

A dash of clay, a dab of fiber from crab shells, and a dollop of DNA: This strange group of materials are actually the ingredients of promising green fire retardants invented by researchers at NIST. Applied to polyurethane foam, the bio-based coatings greatly reduced the flammability of the common furniture padding after it was exposed to an open flame.

Scientists unravel molecular secret of short, intense workouts

June 5, 2014 1:59 pm | News | Comments

In the last few years, the benefits of short, intense workouts have been extolled by both researchers and exercise fans as something of a metabolic panacea capable of providing greater overall fitness. Now, a new study from scientists at The Scripps Research Institute in Florida confirm that there is something molecularly unique about intense exercise: the activation of a single protein.

HIV can cut and paste in the human genome

May 28, 2014 8:31 am | by Kirsten Olesen, Aarhus University | News | Comments

A new technology developed in Denmark uses the HIV virus as a tool in the fight against hereditary diseases and, in the long term, against HIV infection as well. The technology repairs the genome in a new and safer manner by using the virus as nanoparticles to manage the “cut and paste” approach to modifying the genome.

New “wireless” nanotechnology to help study neurons

May 23, 2014 9:28 am | by Jim Fessenden, Univ. of Massachusetts | News | Comments

Researchers at the Univ. of Massachusetts will lead an international team of scientists in the development and implementation of a new optogenetic platform that can remotely activate neurons inside a free-moving organism. Using a new class of nanoparticles they propose to selectively turn on non-image forming photoreceptors inside mice and Drosophila, unencumbered by the fiber optic wires currently used in optogenetic technologies.

New technology simplifies production of biotech medicines

May 14, 2014 9:24 am | News | Comments

The final step in the production of a biotech medicine is finishing with the correct sugar structure. This step is essential for the efficacy of the medicine, but it also makes the production process very complex and expensive. Researchers in Belgium have developed a technology that shortens the sugar structures whilst retaining the therapeutic efficiency. This technology could make production of biotech medicines simpler and cheaper.

Corn dwarfed by temperature dip suitable for growing in caves, mines

May 13, 2014 7:23 am | News | Comments

A new study shows that lowering temperatures for two hours each day reduces the height of corn without affecting its seed yield. The technique could be used to grow crops in controlled-environment facilities in caves and former mines.

Enzyme study raises possibility of more productive plants

May 12, 2014 2:42 pm | News | Comments

Plant scientists at Brookhaven National Laboratory have found that certain enzymes responsible for desaturating fatty acids, the building blocks of oils, can link up to efficiently pass intermediate products from one enzyme to another. The research lead to the development of plants that can accumulate high levels of more healthful polyunsaturated fatty acids, or fatty acids that could be used as raw materials in place of petroleum.

Genetically modified foods confuse U.S. consumers

May 9, 2014 12:22 pm | by Mary Clare Jalonick - Associated Press - Associated Press | News | Comments

Genetically modified foods have been around for years, but most Americans have no idea if they are eating them. The Food and Drug Administration says they don't need to be labeled. But in the first major victory for consumers who say they have the right to know whether their food contains GMOs, the state of Vermont has moved forward on its own.

Scientists create first living organism that transmits unnatural DNA “letters”

May 8, 2014 12:41 pm | News | Comments

Scripps Research Institute scientists have engineered a bacterium whose genetic material includes an added pair of DNA “letters,” or bases, not found in nature. The cells of this unique bacterium can replicate the unnatural DNA bases more or less normally, for as long as the molecular building blocks are supplied.

Cloning approach makes diabetes stem cell advance

April 30, 2014 7:32 am | News | Comments

In a potential step toward new diabetes treatments, scientists used a cloning technique to make insulin-producing cells with the DNA of a diabetic woman. The approach could someday aid treatment of the Type 1 form of the illness, which is usually diagnosed in childhood and accounts for about 5% of diabetes cases in the U.S.

Cell resiliency surprises scientists

April 24, 2014 4:22 pm | by Anzar Abbas, Michigan State Univ. | News | Comments

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative way. A team of researchers at Michigan State Univ. have shown in a study that cells can grow normally without a crucial component needed to duplicate their DNA.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading