Subscribe to Diagnostics
View Sample

FREE Email Newsletter

Diagnostic cocktail: Pour, shake and stir

March 1, 2013 10:01 am | News | Comments

A homebrewed diagnostic mixture containing a single drop of blood, a dribble of water, and a dose of DNA powder with gold particles could mean rapid diagnosis and treatment of the world's leading diseases in the near future. The cocktail diagnostic is being developed at the University of Toronto and it involves the same technology used in over-the-counter pregnancy tests.

Disease diagnosis at the touch of a button

February 26, 2013 7:56 am | News | Comments

When viruses like HIV/AIDS strike in underdeveloped regions of the world, they often spiral out of control in part because there is no easy way to bring diagnostic equipment to remote areas so that the diseases can be identified, treated, and stopped before they spread. Now, an inexpensive, portable, easy-to-use device, built by a team of Caltech engineers and biologists, promises to speed the diagnosis of HIV/AIDS and other diseases—and improve treatment—in even the most far-flung corners of the world.

Why cells stick: Phenomenon extends longevity of bonds between cells

February 15, 2013 8:50 am | News | Comments

Research carried out by scientists at the Georgia Institute of Technology and The University of Manchester has revealed new insights into how cells stick to each other and to other bodily structures, an essential function in the formation of tissue structures and organs. It's thought that abnormalities in their ability to do so play an important role in a broad range of disorders, including cardiovascular disease and cancer.


Building a biochemistry lab-on-a-chip

February 13, 2013 8:04 am | News | Comments

Miniaturized laboratory-on-chip systems promise rapid, sensitive, and multiplexed detection of biological samples for medical diagnostics, drug discovery, and high-throughput screening. Using microfabrication techniques and incorporating a unique design of transistor-based heating, researchers at the University of Illinois at Urbana-Champaign are further advancing the use of silicon transistor and electronics into chemistry and biology for point-of-care diagnostics.

Scientists probe human cells with high-frequency sound

February 4, 2013 8:29 am | News | Comments

Sound waves are widely used in medical imaging, such as when doctors take an ultrasound of a developing fetus. Now scientists have developed a way to use sound to probe tissue on a much tinier scale. Researchers deployed high-frequency sound waves to test the stiffness and viscosity of the nuclei of individual human cells. The probe could eventually help answer questions such as how cells adhere to medical implants and why healthy cells turn cancerous.

Study: Harmful effects of bisphenol A proven

January 22, 2013 11:43 am | News | Comments

The compound bisphenol A, which is found in plastics and resins, has been under scrutiny as chemists attempt to determine whether it is a health hazard for humans. According to researchers in France, even weak concentrations of bisphenol A are sufficient to produce a negative reaction in human testicles, reducing the production of testosterone hormones.

Breath test identifies bacteria's fingerprint

January 14, 2013 11:51 am | News | Comments

Scientists have identified the chemical "fingerprints" given off by specific bacteria when present in the lungs, potentially allowing for a quick and simple breath test to diagnose infections such as tuberculosis. The researchers have successfully distinguished between different types of bacteria, as well as different strains of the same bacteria, in the lungs of mice by analyzing the volatile organic compounds (VOCs) present in exhaled breath.

Improving the accuracy of cancer diagnoses

December 26, 2012 8:41 am | by Anne Trafton, MIT News Office | News | Comments

Tiny calcium deposits can be a telltale sign of breast cancer. However, in the majority of cases these microcalcifications signal a benign condition. A new diagnostic procedure developed at Massachusetts Institute of Technology and Case Western Reserve University could help doctors more accurately distinguish between cancerous and noncancerous cases.


Glowing fish shed light on metabolism

December 3, 2012 11:48 am | News | Comments

Emerging from a panel of 2,400 medications and drug-like compounds tested in a tiny zebrafish, a compound has been pinpointed by researchers who say it regulates whole-body metabolism and appears to protect obese mice from signs of metabolic disorders. The discovery may help drug discovery efforts to help help the rising population of Americans adults at risk for diabetes and other metabolic disorders.

Scanning innovation may improve personalized medicine

November 28, 2012 12:07 pm | News | Comments

New combinations of medical imaging technologies hold promise for improved early disease screening, cancer staging, therapeutic assessment, and other aspects of personalized medicine, according to a new Virginia Tech report. The integration of multiple major tomographic scanners into a single framework involves the fusion of many imaging modalities known as "omni-tomography”.

White smell: Scientists find odor has color

November 26, 2012 4:49 pm | News | Comments

You can see the color white; you can hear white noise. Now, researchers have shown that you can also smell a white odor. To be perceived as white, a stimulus (like light or sound) must meet two conditions: The mix that produces them must span the range of our perception; and each component must be present at the exact same intensity. Neuroscientists have reproduced these conditions for scent.

Tooth “tattoo” sensor may help dentists assess patients' oral health

November 9, 2012 8:58 am | by David Levin, Tufts University | News | Comments

A sensor invented by Tufts University bioengineers, when attached temporarily to a tooth, could one day help dentists fine-tune treatments for patients with chronic periodontitis, for example, or even provide a window on a patient’s overall health. The thin foil-like sensor is built from gold, silk, and graphite, has a built-in antenna to receive power and signals, and is applied directly to a tooth.

Portable device enables quick RNA detection

November 8, 2012 10:29 am | News | Comments

A new power-free microfluidic chip developed by researchers at the RIKEN Advanced Science Institute enables detection of microRNA from extremely small sample volume in only 20 minutes. By drastically reducing the time and quantity of sample required for detection, the chip lays the groundwork for early-stage point-of-care diagnosis of diseases.


Children’s hospital, Silicon Valley to market medical research software

October 31, 2012 10:18 pm | News | Comments

The latest significant biomedical informatics technology is not coming from the biotech industry or a university. In fact, it’s coming from a children’s hospital. Nationwide Children’s Hospital in Columbus, Ohio, and Transformatix Technologies, Inc., in Davis, California, have partnered to create BioLinQ, a new biomedical informatics company designed to supply advanced software solutions for disease diagnosis and medical research.

Prototype ultra sensitive disease sensor developed

October 29, 2012 11:00 am | News | Comments

Scientists in the U.K. have built a sensor that would enable doctors to detect the early stages of diseases and viruses with the naked eye. The sensor works by analyzing serum, derived from blood. If the result is positive, a reaction that generates irregular clumps of nanoparticles gives off a distinctive blue hue in a solution inside the container. If the results are negative the nanoparticles separate into ball-like shapes, creating a reddish hue.

Measuring molecules with the naked eye

October 26, 2012 1:36 pm | News | Comments

When someone develops liver cancer, the disease introduces a very subtle difference to their bloodstream, increasing the concentration of a particular molecule by just 10 parts per billion. That small shift is normally difficult to detect without sophisticated equipment, but new lab-on-a-chip technology designed at Brigham Young University can reveal the presence of ultra-low concentrations of a target molecule.

Study questions feasibility of entire genome sequencing in minutes

October 17, 2012 12:04 pm | News | Comments

The claim that nanopore technology is on the verge of making DNA analysis so fast and cheap that a person's entire genome could be sequenced at low cost in just minutes has produced intense interest. But a review by Northeastern University physicist Meni Wanunu questions whether the remaining technical hurdles can be overcome to create a workable, easily produced commercial device.

An affordable way to generate medical isotopes

October 15, 2012 11:49 am | News | Comments

Scientists at Argonne National Laboratory have developed a safe and affordable way to ensure a reliable U.S. supply of certain medical isotopes. Although the invention is at a conceptual stage, it has the potential to provide critical medical diagnostic material for small regional hospitals.

Bacterial life, filmed in multicolor

October 11, 2012 9:11 am | News | Comments

An international team of scientists has discovered a new method for coloring the cell wall of bacterial cells to determine how they grow. Multicolored probes target cell wall synthesis, labeling them with nontoxic dyes. The technique provides a new, much-needed tool for the development of new antibiotics.

Researchers create a universal map of vision in the human brain

October 4, 2012 9:52 am | News | Comments

Nearly 100 years after a British neurologist first mapped the blind spots caused by missile wounds to the brains of soldiers, University of Pennsylvania scientists have perfected his map using modern-day technology. Their results create a map of vision in the brain based upon an individual's brain structure, even for people who cannot see. Their result could, among other things, guide efforts to restore vision using a neural prosthesis that stimulates the surface of the brain.

Sticky paper offers cheap, easy solution for paper-based diagnostics

October 3, 2012 7:00 am | by Hannah Hickey | News | Comments

A University of Washington bioengineer has recently developed a way to make regular paper stick to medically interesting molecules. The work produced a chemical trick to make paper-based diagnostics using plain paper, the kind found at office supply stores around the world.

Acoustic cell-sorting chip may lead to cell phone-sized laboratories

October 3, 2012 4:32 am | News | Comments

According to a team of Penn State University researchers, a technique that uses acoustic waves to sort cells on a chip may create miniature medical analytic devices that could make Star Trek's tricorder seem a bit bulky in comparison. The device uses two beams of acoustic—or sound—waves to act as acoustic tweezers and sort a continuous flow of cells on a dime-sized chip.

New 3D medical scanner to aid doctors on the diagnostic “front lines”

October 2, 2012 8:58 am | News | Comments

In the operating room, surgeons can see inside the human body in real time using advanced imaging techniques, but primary care physicians haven't commonly had access to the same technology. Engineers from the University of Illinois at Urbana-Champaign have recently created a new imaging tool for them: a handheld scanner that would enable them to image all the sites they commonly examine, such as bacterial colonies in the middle ear in 3D, or the thickness and health of patients' retinas.

Bioengineers design rapid diagnostic tests inspired by nature

September 28, 2012 7:12 am | News | Comments

By mimicking nature's own sensing mechanisms, bioengineers have designed inexpensive medical diagnostic tests that take only a few minutes to perform. The rapid and easy-to-use diagnostic test consists of a nanometer-scale DNA "switch" that can quickly detect antibodies specific to a wide range of diseases.

Microfluidic device measures 768 biomolecular interactions at once

September 25, 2012 7:49 am | News | Comments

As part of his doctoral research at the California Institute of Technology, Sebastian Maerkl designed a device that he named “MITOMI”—a small device containing hundreds of microfluidic channels equipped with pneumatic valves. Now with EPFL’s Bioengineering Institute in Switzerland, Maerkl has developed the new k-MITOMI, which is smaller than a domino but can simultaneously measure hundreds of biomolecular interactions.

You may login with either your assigned username or your e-mail address.
The password field is case sensitive.