Advertisement
Cancer
Subscribe to Cancer
View Sample

FREE Email Newsletter

“Flying carpet” technique uses graphene to deliver one-two punch of anticancer drugs

January 6, 2015 10:02 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

An international team of researchers has developed a drug delivery technique that utilizes graphene strips as “flying carpets” to deliver two anticancer drugs sequentially to cancer cells, with each drug targeting the distinct part of the cell where it will be most effective. The technique was found to perform better than either drug in isolation when tested in a mouse model targeting a human lung cancer tumor.

“Glowing” new nanotechnology guides cancer surgery

January 5, 2015 3:41 pm | by David Stauth, Oregon State Univ. | News | Comments

Researchers at Oregon State Univ. have developed a new way to selectively insert compounds into cancer cells—a system that will help surgeons identify malignant tissues and then, in combination with phototherapy, kill any remaining cancer cells after a tumor is removed. It’s about as simple as, “If it glows, cut it out.” And if a few malignant cells remain, they’ll soon die.

Tailor-made cancer treatments? New cell culture technique paves the way

December 19, 2014 8:15 am | News | Comments

In a development that could lead to a deeper understanding of cancer and better early-stage treatment of the disease, University of Michigan researchers have devised a reliable way to grow a certain type of cancer cells from patients outside the body for study.

Advertisement

Landmark discovery in gold nanorod instability

December 18, 2014 3:14 pm | News | Comments

Researchers at Swinburne University of Technology have discovered an instability in gold nanoparticles that is critical for their application in future technology. Gold nanorods are important building blocks for future applications in solar cells, cancer therapy and optical circuitry.

Lens-free microscope can detect cancer at the cellular level

December 17, 2014 3:07 pm | by Bill Kisliuk, Univ. of California, Los Angeles | News | Comments

Univ. of California, Los Angeles researchers have developed a lens-free microscope that can be used to detect the presence of cancer or other cell-level abnormalities with the same accuracy as larger and more expensive optical microscopes. The invention could lead to less expensive and more portable technology for performing common examinations of tissue, blood and other biomedical specimens.

Study shows how breast cancer cells break free to spread in the body

December 17, 2014 2:41 pm | by Brett Israel, Georgia Institute of Technology | News | Comments

More than 90% of cancer-related deaths are caused by the spread of cancer cells from their primary tumor site to other areas of the body. A new study has identified how one important gene helps cancer cells break free from the primary tumor.

Proteins drive cancer cells to change states

December 16, 2014 7:50 am | by Anne Trafton, MIT News Office | News | Comments

A new study from Massachusetts Institute of Technology implicates a family of RNA-binding proteins in the regulation of cancer, particularly in a subtype of breast cancer. These proteins, known as Musashi proteins, can force cells into a state associated with increased proliferation.

Cancer patients employ mice as avatars

December 15, 2014 3:23 pm | by Associated Press, Marilynn Marchione | News | Comments

Scientists often test drugs in mice. Now some cancer patients are doing the same—with the hope of curing their own disease. They are paying a private lab to breed mice that carry bits of their own tumors so treatments can be tried first on the customized rodents. The idea is to see which drugs might work best on a specific person's cancer.

Advertisement

Injectable 3-D vaccines could fight cancer, infectious diseases

December 8, 2014 4:13 pm | by Kat J. McAlpine, Wyss Institute for Biologically Inspired Engineering | News | Comments

One of the reasons cancer is so deadly is that it can evade attack from the body's immune system, which allows tumors to flourish and spread. Scientists can try to induce the immune system, known as immunotherapy, to go into attack mode to fight cancer and to build long lasting immune resistance to cancer cells. Now, researchers have developed a non–surgical injection of programmable biomaterial to do so.

Cancer uses abdominal stem cells to fuel growth, metastasis

December 3, 2014 9:08 am | by Jade Boyd, Rice Univ. | News | Comments

New research from Rice Univ. and the Univ. of Texas MD Anderson Cancer Center shows how ovarian tumors co-opt a specific type of adult stem cell from abdominal tissues to fuel their growth. The research, published online in Cancer Research, suggests a new way to target aggressive ovarian cancers by disrupting the metabolic processes that allow them to thrive.

Protein predicts response to new immunotherapy drug

December 1, 2014 11:00 am | by Vicky Agnew, Yale Univ. | News | Comments

The presence of an immune-suppressing protein in non-cancerous immune cells may predict how patients with different types of cancer respond to treatment, a multi-center phase I study using an investigational immune therapy drug has found. The trial included patients with melanoma or cancers of the lung, kidney, colon, GI tract, or head and neck, whose tumors were evaluated for PD-L1 expression by a novel assay.

Researchers discover "pre-cancers" in blood

November 26, 2014 6:00 pm | by By Marilynn Marchione - AP Chief Medical Writer - Associated Press | News | Comments

Many older people silently harbor a blood "pre-cancer"—a gene mutation acquired during their lifetime that could start them on the path to leukemia, lymphoma or other blood disease, scientists have discovered. It opens a new frontier on early detection and possibly someday preventing these cancers, which become more common with age.

Nanoparticles infiltrate, kill cancer cells from within

November 24, 2014 11:06 am | by Melanie Titanic-Schefft, Univ. of Cincinnati | News | Comments

Conventional treatment seeks to eradicate cancer cells by drugs and therapy delivered from outside the cell, which may also affect (and potentially harm) nearby normal cells. In contrast to conventional cancer therapy, a Univ. of Cincinnati team has developed several novel designs for iron-oxide based nanoparticles that detect, diagnose and destroy cancer cells using photo-thermal therapy (PTT).

Advertisement

For important tumor-suppressing protein, context is key

November 24, 2014 8:19 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

Scientists from Lawrence Berkeley National Laboratory have learned new details about how an important tumor-suppressing protein, called p53, binds to the human genome. As with many things in life, they found that context makes a big difference. The researchers mapped the places where p53 binds to the genome in a human cancer cell line.

Researchers create first inhibitor for enzyme linked to certain cancers

November 21, 2014 7:49 am | by Univ. of California, Irvine | News | Comments

Recent studies showing acid ceramidase (AC) to be upregulated in melanoma, lung and prostate cancers have made the enzyme a desired target for novel synthetic inhibitor compounds. In Angewandte Chemie, scientists with the Univ. of California, Irvine School of Medicine and the Italian Institute of Technology describe the very first class of AC inhibitors that may aid in the efficacy of chemotherapies.

Drugging the undruggable

November 13, 2014 11:07 am | by Univ. of Cambridge | News | Comments

A trawl through a library of more than 50,000 small molecules has identified a potential candidate to inhibit the spread of cancer cells throughout the body. Reported in Nature Communications, the molecule targets a mechanism of tumor development that had previously been considered “undruggable” and could open the door to further promising new candidates.

Cancer-killing nanodaisies

November 12, 2014 8:31 am | by Alastair Hadden, North Carolina State Univ. | Videos | Comments

North Carolina State Univ. researchers have developed a potential new weapon in the fight against cancer: a daisy-shaped drug carrier that’s many thousands of times smaller than the period at the end of this sentence. Once injected into the bloodstream, millions of these “nanodaisies” sneak inside cancer cells and release a cocktail of drugs to destroy them from within.

Researchers take snapshots of potential “kill switch” for cancer

November 11, 2014 8:35 am | by SLAC Office of Communications | News | Comments

A study conducted in part at the SLAC National Accelerator Laboratory has revealed how a key human protein switches from a form that protects cells to a form that kills them—a property that scientists hope to exploit as a “kill switch” for cancer. The protein, called cIAP1, shields cells from programmed cell death, or apoptosis.

Medicare proposes covering lung cancer screening

November 10, 2014 5:58 pm | by Lauran Neergaard - AP Medical Writer - Associated Press | News | Comments

Medicare may soon begin paying for yearly scans to detect lung cancer in certain current or former heavy smokers. The Centers for Medicare and Medicaid Services on Monday issued a long-awaited proposal to begin covering the screening for high-risk beneficiaries if their doctors agree they meet the criteria.

How human cells become immortal

November 10, 2014 8:35 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

Every day, some of your cells stop dividing, and that’s a good thing. Cells that proliferate indefinitely are immortal, an essential early step in the development of most malignant tumors. Despite its importance in cancer, the process of cell immortalization is poorly understood. That’s because scientists have lacked a good way to study immortalization in human cells as it occurs during cancer progression.

New technology shows promise for delivery of therapeutics to the brain

November 3, 2014 8:26 am | by Lynn A. Nystrom, Virginia Tech | News | Comments

A new technology that may assist in the treatment of brain cancer and other neurological diseases is the subject of an article in Technology. According to the authors, the current medical use of chemotherapy to treat brain cancer can be inefficient because of the blood-brain-barrier that impedes the delivery of drugs out of blood vessels and into the tumor.

Researchers prove mathematical models can predict cellular processes

October 29, 2014 9:33 am | News | Comments

A team led by Virginia Tech researchers studied cells found in breast and other types of connective tissue and discovered new information about cell transitions that take place during wound healing and cancer. They developed mathematical models to predict the dynamics of cell transitions, and by comparison gained new understanding of how a substance known as transforming growth factor triggers cell transformations.

Blood test may help to diagnose pancreatic cancer

October 29, 2014 9:16 am | News | Comments

Cancer researchers have found that a simple blood test might help diagnose pancreatic cancer, one of the most deadly forms of the disease. In new research at Indiana Univ., scientists have found that several microRNAs, which are small RNA molecules, circulate at high levels in the blood of pancreatic cancer patients.

New home test shakes up colon cancer screening

October 26, 2014 12:27 pm | by Marilynn Marchione - AP Chief Medical Writer - Associated Press | News | Comments

Starting Monday, millions of people who have avoided colon cancer screening can get a new home test that's noninvasive and doesn't require the icky preparation most other methods do. The test is the first to look for cancer-related DNA in stool. But deciding whether to get it is a more complex choice than ads for "the breakthrough test ... that's as easy as going to the bathroom" make it seem.

Scientists to use tiny particles to fight big diseases

October 23, 2014 12:49 pm | Videos | Comments

A group of scientists in Florida have combined medicine and advanced nanotechnological engineering to create a smarter, more targeted therapy that could overcome the most lethal gynecologic cancer. The technology involves combining Taxol, a chemotherapy drug, with magneto-electric nanoparticles that can penetrate the blood-brain barrier.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading