Advertisement
Biotechnology
Subscribe to Biotechnology
View Sample

FREE Email Newsletter

Google's health startup forges venture with AbbVie

September 3, 2014 4:09 pm | News | Comments

An ambitious health startup from Google is teaming up with biotechnology drugmaker AbbVie in a $500 million joint venture that will try to develop new ways to treat cancer and other diseases such as Alzheimer's. The alliance announced Wednesday calls for Google Inc. and AbbVie Inc. to each invest $250 million in the project. An additional $1 billion may be poured into the project.

Handheld scanner could aid complete removal of brain tumors

September 3, 2014 1:09 pm | News | Comments

Cancerous brain tumors are notorious for growing back despite surgical attempts to remove them, and for leading to a dire prognosis for patients. But scientists are developing a new way to try to root out malignant cells during surgery so fewer or none get left behind to form new tumors. The technology relies on a Raman scanner that can read injected nanoprobes.

A new synthetic amino acid for an emerging class of drugs

September 3, 2014 1:01 pm | News | Comments

Scientists in Switzerland have developed a new amino acid that can be used to modify the 3-D structure of therapeutic peptides. Insertion of the amino acid into bioactive peptides enhanced their binding affinity up to 40-fold. Peptides with the new amino acid could potentially become a new class of therapeutics.

Advertisement

A “clear” choice for clearing 3-D cell cultures

September 3, 2014 11:40 am | by David Orenstein, Brown Univ. | News | Comments

Because Brown Univ. biomedical engineering graduate student Molly Boutin needed to study how neural tissues grow from stem cells, she wanted to grow not just a cell culture, but a sphere-shaped one. Cells grow and interact more naturally in 3-D cultures than when they’re confined to thin slides or dishes.

A new way to diagnose malaria

September 2, 2014 7:38 am | by Anne Trafton, MIT News Office | News | Comments

Over the past several decades, malaria diagnosis has changed very little. After taking a blood sample from a patient, a technician smears the blood across a glass slide, stains it with a special dye and looks under a microscope for the Plasmodium parasite, which causes the disease. This approach gives an accurate count of how many parasites are in the blood, but is not ideal because there is potential for human error.

From nose to knee: Engineered cartilage regenerates joints

August 28, 2014 11:59 am | News | Comments

Cartilage lesions in joints often appear in older people as a result of degenerative processes, and appear in younger people after injuries and accidents. Such defects are difficult to repair and often require complicated surgery and long rehabilitation times. Researchers in Switzerland have reported that cells taken from the nasal septum are able to adapt to the environment of the knee joint and can thus repair articular cartilage defects.

New DARPA program aimed at developing customized therapies

August 28, 2014 9:11 am | News | Comments

DARPA’s new Electrical Prescriptions (ElectRx) program was among the initiatives the White House highlighted this week as President Barack Obama addressed the need for new and more effective strategies for improving the health of service members, veterans and others. ElectRx goes beyond medication, aiming to explore neuromodulation of organ functions to help the human body heal itself.

Encyclopedia of how genomes function gets much bigger

August 28, 2014 9:07 am | News | Comments

A big step in understanding the human genome has been unveiled in the form of three analyses that provide the most detailed comparison yet of how the genomes of the fruit fly, roundworm, and human function. The research compares how the information encoded in the three species’ genomes is “read out,” and how their DNA and proteins are organized into chromosomes. The results add billions of entries to the archive of functional genomic data.

Advertisement

Water “thermostat” could help engineer drought-resistant crops

August 28, 2014 8:58 am | News | Comments

Duke Univ. researchers have identified a gene that could help scientists engineer drought-resistant crops. The gene, called OSCA1, encodes a protein in the cell membrane of plants that senses changes in water availability and adjusts the plant’s water conservation machinery accordingly. The effect is similar to a thermostat.

Nanocosmos of cells under the magnifying glass

August 26, 2014 3:56 pm | by Gunnar Bartsch, Julius-Maximilians-Universität Würzburg | News | Comments

Scientists in Germany have managed to take a unique look at the membranes of human cells using a new technique called dSTORM: direct stochastic optical reconstruction microscopy. This is a specific form of high-resolution fluorescence microscopy, and it makes individual saccharified proteins and lipids visible at the molecular level.

A glucose meter of a different color provides continuous monitoring

August 26, 2014 7:53 am | by Liz Ahlberg, Physical Sciences Editor, Univ. of Illinois, Urbana-Champaign | Videos | Comments

Univ. of Illinois engineers are bringing a touch of color to glucose monitoring. The researchers developed a new continuous glucose monitoring material that changes color as glucose levels fluctuate, and the wavelength shift is so precise that doctors and patients may be able to use it for automatic insulin dosing—something now possible using current point measurements like test strips.

Living organ grown from lab-created cells

August 25, 2014 2:25 pm | Videos | Comments

Laboratory-grown replacement organs have moved a step closer with the completion of a new study. Scientists have grown a fully functional organ from transplanted laboratory-created cells in a living animal for the first time. They have created a thymus, an organ next to the heart that produces immune cells known as T cells that are vital for guarding against disease.

A surprising new role for natural killer T cells

August 25, 2014 9:25 am | News | Comments

In the past, immune cells were clearly divided into innate cells, which respond to attacks in a non-specific way, and adaptive cells, which learn to recognize new antigens and gain the ability to rapidly react to later attacks. Researchers at RIKEN in Japan have discovered that is not always the case, having found that killer T cells previously thought to be innate, and thus short-lived, can remain in the lung for up to nine months.

Advertisement

Breakthrough understanding of biomolecules could lead to new, better drugs

August 25, 2014 9:09 am | by Marcia Goodrich, Michigan Technological Univ. | News | Comments

There’s a certain type of biomolecule built like a nano-Christmas tree. Called a glycoconjugate, it’s many branches are bedecked with sugary ornaments. It’s those ornaments that get all the glory. That’s because, according to conventional wisdom, the glycoconjugate’s lowly “tree” basically holds the sugars in place as they do the important work of reacting with other molecules.

LFA Technology Helps Sniff Out Anthrax

August 22, 2014 3:04 pm | Award Winners

To mitigate anthrax attack risks, Sandia National Laboratories developed a credit-card sized device based on the lateral flow assay for detection of B. anthracis in ultra-low resource environments: BaDx (Bacillus anthracis diagnostics). BaDx is a low-cost, disposable device that requires no power, instrumentation or equipment to operate, and no refrigeration to maintain efficacy.

Efficient Bioengineering

August 22, 2014 2:50 pm | Award Winners

Lawrence Berkeley National Laboratory’s Tissue-Specific Cell-Wall Engineering is a powerful new method for rapidly transforming crops into biological factories. The technology, a suite of high-precision genetic tools and procedures, makes it possible to change plant traits in a highly selective, tissue-specific fashion.

Vault nanoparticles show promise for cancer treatment, potential HIV cure

August 22, 2014 9:47 am | by Shaun Mason, Univ. of California, Los Angeles | News | Comments

A multidisciplinary team of scientists from the Univ. of California, Los Angeles and Stanford Univ. has used a naturally occurring nanoparticle called a vault to create a novel drug delivery system that could lead to advances in the treatment of cancer and HIV. Their findings could lead to cancer treatments that are more effective with smaller doses and to therapies that could potentially eradicate the HIV virus.

Researchers use 3-D printers to create custom medical implants

August 21, 2014 10:18 am | by Dave Guerin, Louisiana Tech Univ. | News | Comments

A team of researchers at Louisiana Tech Univ. has developed an innovative method for using affordable, consumer-grade 3-D printers and materials to fabricate custom medical implants that can contain antibacterial and chemotherapeutic compounds for targeted drug delivery.

Exploring 3-D printing to make organs for transplants

August 21, 2014 9:46 am | by American Chemical Society | News | Comments

Printing whole new organs for transplants sounds like something out of a sci-fi movie, but the real-life budding technology could one day make actual kidneys, livers, hearts and other organs for patients who desperately need them. In Langmuir, scientists are reporting new understanding about the dynamics of 3-D bioprinting that takes them a step closer to realizing their goal of making working tissues and organs on-demand.

Engineering new bone growth

August 19, 2014 7:56 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology chemical engineers have devised a new implantable tissue scaffold coated with bone growth factors that are released slowly over a few weeks. When applied to bone injuries or defects, this coated scaffold induces the body to rapidly form new bone that looks and behaves just like the original tissue.

Microchip reveals how tumor cells transition to invasion

August 18, 2014 11:06 am | by Kevin Stacey, Brown Univ. | News | Comments

Using a microengineered device that acts as an obstacle course for cells, researchers have shed new light on a cellular metamorphosis thought to play a role in tumor cell invasion throughout the body. The epithelial-mesenchymal transition (EMT) is a process in which epithelial cells, which tend to stick together within a tissue, change into mesenchymal cells, which can disperse and migrate individually.

Artificial cells act like the real thing

August 18, 2014 10:55 am | News | Comments

Imitation, they say, is the sincerest form of flattery, but mimicking the intricate networks and dynamic interactions that are inherent to living cells is difficult to achieve outside the cell. Now, as published in Science, Weizmann Institute scientists have created an artificial, network-like cell system that is capable of reproducing the dynamic behavior of protein synthesis.

New way to treat solid tumors

August 15, 2014 11:12 am | News | Comments

An international team of scientists has shown that an antibody against the protein EphA3, found in the micro-environment of solid cancers, has anti-tumor effects. As EphA3 is present in normal organs only during embryonic development but is expressed in blood cancers and in solid tumors, this antibody-based approach may be a suitable candidate treatment for solid tumors.

New gene editing method may help correct muscular dystrophy

August 15, 2014 8:56 am | News | Comments

Researchers in Texas have successfully used a new gene editing method to correct a mutation that leads to Duchenne muscular dystrophy (DMD) in a mouse model of the condition. The technique is called CRISPR/Cas9-mediated genome editing, and can precisely remove a mutation in DNA, allowing the body’s DNA repair mechanisms to replace it with a normal copy of the gene.

Non-invasive method controls size of molecules passing blood-brain barrier

August 14, 2014 4:38 pm | News | Comments

A new technique has demonstrated for the first time that the size of molecules penetrating the blood-brain barrier can be controlled using acoustic pressure. The innovative ultrasound approach uses acoustic pressure to let molecules through, and may help treatment for central nervous system diseases like Parkinson’s and Alzheimer’s.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading