Advertisement
Biotechnology
Subscribe to Biotechnology
View Sample

FREE Email Newsletter

Removing parts of shape-shifting protein explains how blood clots

July 15, 2014 1:54 pm | News | Comments

Prothrombin is an inactive precursor for thrombin, a key blood-clotting protein, and is essential for life because of its ability to coagulate blood. Using x-ray crystallography, researchers have published the first image of this important protein. By removing disordered sections of the protein’s structure, scientists have revealed its underlying molecular mechanism for the first time.

Skin gel stops breast cancer growth without dangerous side effects

July 15, 2014 1:47 pm | by Marla Paul, Northwestern Univ. | News | Comments

Tamoxifen is an oral drug that is used for breast cancer prevention and as therapy for non-invasive breast cancer and invasive cancer. Seema Khan, a professor of surgery at Northwestern Univ., has found that is tamoxifen is used in gel form, it reduces the growth of cancer cells while minimizing dangerous side effects such as blood clots and uterine cancer.

Researchers invent nanotech microchip to diagnose type-1 diabetes

July 14, 2014 9:22 am | News | Comments

A cheap, portable, microchip-based test for diagnosing type-1 diabetes could speed up diagnosis and enable studies of how the disease develops. Handheld microchips distinguish between the two main forms of diabetes mellitus, which are both characterized by high blood-sugar levels but have different causes. Until now, making the distinction has required a slow, expensive test available only in sophisticated healthcare settings.

Advertisement

Artificial cilia: Scientists develop nanostructured transportation system

July 7, 2014 3:40 pm | News | Comments

For billions of years, bacteria have moved themselves using cilia. Now, researchers have constructed molecules that imitate these tiny, hair-like structures. The innovation was possible by nanofabricating artificial cilia that would respond in just one direction to provide a net displacement of motion.

How knots can swap positions on a DNA strand

July 7, 2014 9:48 am | News | Comments

Recent computer simulations show how, for the first time, two knots on a DNA strand can interchange their positions, with one knot growing in size and the other diffusing along the contour of the first. This swapping of positions on a DNA strand may also happen in living organisms, and the mechanism may play an important role in future technologies such as nanopore sequencing.

New discovery in living cell signaling

July 7, 2014 9:33 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

An international collaboration of researchers have unlocked the secret behind the activation of the Ras family of proteins, one of the most important components of cellular signaling networks in biology and major drivers of cancers that are among the most difficult to treat. To make the discovery, they performed single molecule studies of Ras activation in a membrane environment.

DNA origami nano-tool provides important clue to cancer

July 7, 2014 9:26 am | News | Comments

Researchers in Sweden have headed a study that provides new knowledge about the EphA2 receptor, which is significant in several forms of cancer. The researchers employed the method of DNA origami, in which a DNA molecule is shaped into a nanostructure, and used these structures to test theories about cell signalling.

“Nanojuice” could improve how doctors examine the gut

July 7, 2014 8:05 am | by Cory Nealon, Univ. at Buffalo | News | Comments

Located deep in the human gut, the small intestine is not easy to examine: X-rays, MRIs and ultrasound images each suffer limitations. Univ. at Buffalo researchers are developing a new imaging technique involving nanoparticles suspended in liquid to form “nanojuice” that patients would drink. Upon reaching the small intestine, doctors would strike the nanoparticles with laser light, providing a non-invasive, real-time view of the organ.

Advertisement

Scientists withdraw claim about making stem cells

July 2, 2014 1:41 pm | by Malcolm Ritter, AP Science Writer | News | Comments

In two papers published in January in the journal Nature, Japanese and American researchers said that they'd been able to transform ordinary mouse cells into versatile stem cells by exposing them to a mildly acidic environment. The scientists withdrew that claim Wednesday, admitting to "extensive" errors that meant they were “unable to say without a doubt" that the method works.

Some stem cell methods closer to “gold standard” than others

July 2, 2014 1:17 pm | News | Comments

New research led by the Salk Institute shows, for the first time, that stem cells created using two different methods are far from identical. Their work reveals that stem cells created by moving genetic material from a skin cell into an empty egg cell, instead of activating genes to revert adult cells to their embryonic state, more closely resemble human embryonic stem cells, which are considered the gold standard in the field.

Fluorescent molecular rotors could help find anti-cancer drugs

July 2, 2014 12:13 pm | News | Comments

Researchers have already used molecular rotors as viscosity sensor probes in live cells, but a recent study in Singapore is the first to report on the use of fluorescent molecular rotors to study critical protein interactions.

Blind lead the way in brave new world of tactile technology

July 2, 2014 9:46 am | by Yasmin Anwar, UC Berkeley | News | Comments

New research at UC Berkeley has found that people are better and faster at navigating tactile technology when using both hands and several fingers. Moreover, blind people in the study outmaneuvered their sighted counterparts, perhaps because they’ve developed superior cognitive strategies for finding their way around. These insights are useful as more media companies are implementing tactile interfaces.

Behind a marine creature’s bright green fluorescent glow

July 2, 2014 9:43 am | News | Comments

Scientists at Scripps Institution of Oceanography have conducted the most detailed examination of green fluorescent proteins (GFPs) in lancelets, marine invertebrates also known as “amphioxus.” They have deciphered the structural components related to fluorescence and have found that only a few key structural differences at the nanoscale allows the sea creature to emit different brightness levels.

Advertisement

Automated dynamic light scattering benefits protein-protein quantifications

July 1, 2014 2:08 pm | Application Notes

Wyatt Technology Corp. has highlighted a recently authored study that outlines the advantages of quantifying protein-protein interactions (PPI) using automated dynamic light scattering (DLS) in high-throughput screening (HTS) mode to identify promising candidates for drug-like properties. Automated DLS helps establish the suitability of formulations before entering extended stability studies.

Research may help prevent eye injury among soldiers

July 1, 2014 11:50 am | by K.C. Gonzalez, UTSA | News | Comments

In a basement laboratory at Fort Sam Houston military base in Texas, a research team has spent the last two years simulating improvised explosive device blasts on postmortem pig eyes using a high-powered shock tube. Their most striking discovery is that these blasts can damage the optic nerve, and these injuries can occur even at low pressures, causing visual defects that until now have been associated traumatic brain injuries.

Research team pursues techniques to improve elusive stem cell therapy

July 1, 2014 10:16 am | News | Comments

Mesenchymal stem cells have become attractive tools for bioengineers, but some scientists haven’t given up on their regenerative potential. A research team at Harvard Univ. recently found that transplanting mesenchymal stem cells along with blood vessel-forming cells naturally found in circulation improves results. This co-transplantation keeps the mesenchymal stem cells alive longer in mice after engraftment, up to weeks from just hours.

Cellular team players

July 1, 2014 9:41 am | News | Comments

Many enzymes work only with a co-trainer, of sorts. Scientists in Germany have shown what this kind of cooperation looks like in detail using a novel methodology applied to the heat shock protein Hsp90, which controls the proper folding of other proteins. Together with a second molecule, the co-chaperone P23, it splits the energy source ATP to yield the energy it needs to do its work.

Researchers show that bacteria can evolve biological timer to survive antibiotics

June 30, 2014 2:14 pm | News | Comments

Using the quantitative approach of physicists, biologists in Israel have developed experimental tools to measure precisely the bacterial response to antibiotics. Their mathematical model of the process has led them to hypothesize that a daily three-hour dose would enable the bacteria to predict delivery of the drug, and go dormant for that period in order to survive.

Study: Stem cells more widespread than previously believed

June 30, 2014 2:00 pm | News | Comments

New research suggests that scientists have only scratched the surface of understanding the nature, physiology and location of stem cells. Specifically, the report suggests that embryonic and induced pluripotent stem cells may not be the only source from which all three germ layers in the human body (nerves, liver or heart and blood vessels) can develop.

New light-sensitive protein enables simpler, more powerful optogenetics

June 30, 2014 9:14 am | by Anne Trafton, MIT | News | Comments

Optogenetics relies on light-sensitive proteins that can suppress or stimulate electrical signals within cells. This technique requires a light source to be implanted in the brain, where it can reach the cells to be controlled. Massachusetts Institute of Technology engineers have now developed the first light-sensitive molecule that enables neurons to be silenced noninvasively, using a light source outside the skull.

Electric eel genome sequence unlocks shocking secrets

June 27, 2014 12:17 pm | News | Comments

For the first time, the genome of the electric eel has been sequenced. This discovery has revealed the secret of how fishes with electric organs have evolved six times in the history of life to produce electricity outside of their bodies. This research has shed light on the genetic blueprint used to evolve these complex, novel organs.

Controlling movement with light

June 27, 2014 9:29 am | by Anne Trafton, MIT | News | Comments

For the first time, neuroscientists have shown they can control muscle movement by applying optogenetics, a technique that allows scientists to control neurons’ electrical impulses with light, to the spinal cords of animals that are awake and alert. Previously, scientists have used electrical stimulation or pharmacological intervention to control neurons’ activity, but these approaches were not precise enough.

Engineers turn LEGOs into a scientific tool to study plant growth

June 27, 2014 9:25 am | News | Comments

Iowa State University assistant professor of materials science and engineering Ludovico Cademartiri wanted something modular, scalable and structurally precise to serve as the building blocks for controlled environments to support his study of plants. Microfluidics was too expensive and complex, so he turned to the toy aisle.

FDA grapples with oversight of fecal transplants

June 26, 2014 12:18 pm | by Matthew Perrone - AP Health Writer - Associated Press | News | Comments

Imagine a low-cost treatment for a life-threatening infection that could cure up to 90% of patients with minimal side effects, often in a few days.It may sound like a miracle drug, but this cutting-edge treatment is profoundly simple—though somewhat icky: take the stool of healthy patients to cure those with hard-to-treat intestinal infections.

Researchers develop smart gating nanochannels for confined water

June 25, 2014 11:14 am | News | Comments

Confined water exists widely and plays important roles in natural environments, particularly inside biological nanochannels. After several years of work, scientists in China have developed a series of biomimetic nanochannels that can serve as the base for confined transportation of water. The technology suggests a potential use in energy conversion systems.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading