Advertisement
Biotechnology
Subscribe to Biotechnology
View Sample

FREE Email Newsletter

Efficient Bioengineering

August 22, 2014 2:50 pm | Award Winners

Lawrence Berkeley National Laboratory’s Tissue-Specific Cell-Wall Engineering is a powerful new method for rapidly transforming crops into biological factories. The technology, a suite of high-precision genetic tools and procedures, makes it possible to change plant traits in a highly selective, tissue-specific fashion.

Vault nanoparticles show promise for cancer treatment, potential HIV cure

August 22, 2014 9:47 am | by Shaun Mason, Univ. of California, Los Angeles | News | Comments

A multidisciplinary team of scientists from the Univ. of California, Los Angeles and Stanford Univ. has used a naturally occurring nanoparticle called a vault to create a novel drug delivery system that could lead to advances in the treatment of cancer and HIV. Their findings could lead to cancer treatments that are more effective with smaller doses and to therapies that could potentially eradicate the HIV virus.

Researchers use 3-D printers to create custom medical implants

August 21, 2014 10:18 am | by Dave Guerin, Louisiana Tech Univ. | News | Comments

A team of researchers at Louisiana Tech Univ. has developed an innovative method for using affordable, consumer-grade 3-D printers and materials to fabricate custom medical implants that can contain antibacterial and chemotherapeutic compounds for targeted drug delivery.

Advertisement

Exploring 3-D printing to make organs for transplants

August 21, 2014 9:46 am | by American Chemical Society | News | Comments

Printing whole new organs for transplants sounds like something out of a sci-fi movie, but the real-life budding technology could one day make actual kidneys, livers, hearts and other organs for patients who desperately need them. In Langmuir, scientists are reporting new understanding about the dynamics of 3-D bioprinting that takes them a step closer to realizing their goal of making working tissues and organs on-demand.

Engineering new bone growth

August 19, 2014 7:56 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology chemical engineers have devised a new implantable tissue scaffold coated with bone growth factors that are released slowly over a few weeks. When applied to bone injuries or defects, this coated scaffold induces the body to rapidly form new bone that looks and behaves just like the original tissue.

Microchip reveals how tumor cells transition to invasion

August 18, 2014 11:06 am | by Kevin Stacey, Brown Univ. | News | Comments

Using a microengineered device that acts as an obstacle course for cells, researchers have shed new light on a cellular metamorphosis thought to play a role in tumor cell invasion throughout the body. The epithelial-mesenchymal transition (EMT) is a process in which epithelial cells, which tend to stick together within a tissue, change into mesenchymal cells, which can disperse and migrate individually.

Artificial cells act like the real thing

August 18, 2014 10:55 am | News | Comments

Imitation, they say, is the sincerest form of flattery, but mimicking the intricate networks and dynamic interactions that are inherent to living cells is difficult to achieve outside the cell. Now, as published in Science, Weizmann Institute scientists have created an artificial, network-like cell system that is capable of reproducing the dynamic behavior of protein synthesis.

New way to treat solid tumors

August 15, 2014 11:12 am | News | Comments

An international team of scientists has shown that an antibody against the protein EphA3, found in the micro-environment of solid cancers, has anti-tumor effects. As EphA3 is present in normal organs only during embryonic development but is expressed in blood cancers and in solid tumors, this antibody-based approach may be a suitable candidate treatment for solid tumors.

Advertisement

New gene editing method may help correct muscular dystrophy

August 15, 2014 8:56 am | News | Comments

Researchers in Texas have successfully used a new gene editing method to correct a mutation that leads to Duchenne muscular dystrophy (DMD) in a mouse model of the condition. The technique is called CRISPR/Cas9-mediated genome editing, and can precisely remove a mutation in DNA, allowing the body’s DNA repair mechanisms to replace it with a normal copy of the gene.

Non-invasive method controls size of molecules passing blood-brain barrier

August 14, 2014 4:38 pm | News | Comments

A new technique has demonstrated for the first time that the size of molecules penetrating the blood-brain barrier can be controlled using acoustic pressure. The innovative ultrasound approach uses acoustic pressure to let molecules through, and may help treatment for central nervous system diseases like Parkinson’s and Alzheimer’s.

Inside the cell, an ocean of buffeting waves

August 14, 2014 1:22 pm | by Caroline Perry, Harvard Univ. | News | Comments

Conventional wisdom holds that the cytoplasm of mammalian cells is a viscous fluid, with organelles and proteins suspended within it, jiggling against one another and drifting at random. However, a new biophysical study led by researchers at Harvard Univ. challenges this model and reveals that those drifting objects are subject to a very different type of environment.

Nanotech invention improves effectiveness of the “penicillin of cancer”

August 14, 2014 8:01 am | by Jared Sagoff, Argonne National Laboratory | News | Comments

By combining magnetic nanoparticles with one of the most common and effective chemotherapy drugs, Argonne National Laboratory researchers have created a way to deliver anti-cancer drugs directly into the nucleus of cancer cells. They have created nano-sized bubbles, or “micelles,” that contain magnetic nanoparticles of iron oxide and cisplatin, a conventional chemotherapy drug also known as “the penicillin of cancer.”

“Trojan horse” treatment could beat brain tumors

August 13, 2014 12:55 pm | News | Comments

A smart technology which involves smuggling gold nanoparticles into brain cancer cells has proven highly effective in lab-based tests in the U.K. The technique could eventually be used to treat glioblastoma multiforme, which is the most common and aggressive brain tumor in adults, and notoriously difficult to treat.

Advertisement

Tattoo biobatteries produce power from sweat

August 13, 2014 12:45 pm | Videos | Comments

In the future, working up a sweat by exercising may not only be good for your health, but it could also power your small electronic devices. Researchers report that they have designed a sensor in the form of a temporary tattoo that can both monitor a person’s progress during exercise and produce power from their perspiration.

A Potential New Route to Stopping Surgical Bleeding

August 13, 2014 10:44 am | by Lindsay Hock, Managing Editor | Articles | Comments

Surgical and trauma patients are at significant risk for morbidity and mortality from bleeding and/or leaking bodily fluids. With the number and complexity of surgeries rising, so is the need for better hemostatic agents to stop bleeding as quickly as possible. The history of approaches to hemostasis goes back to when people simply used their hands or a tool to apply to a wound to stop bleeding.

“Shape-shifting” material could help reconstruct faces

August 13, 2014 8:49 am | News | Comments

Injuries, birth defects (such as cleft palates) or surgery to remove a tumor can create gaps in bone that are too large to heal naturally. And when they occur in the head, face or jaw, these bone defects can dramatically alter a person’s appearance. Researchers have developed a “self-fitting” material that expands with warm salt water to precisely fill bone defects, and also acts as a scaffold for new bone growth.

Synthetic molecule makes cancer self-destruct

August 12, 2014 8:40 am | News | Comments

Researchers from the University of Texas at Austin and five other institutions have created a molecule that can cause cancer cells to self-destruct by ferrying sodium and chloride ions into the cancer cells. These synthetic ion transporters confirm a two-decades-old hypothesis that could point the way to new anticancer drugs while also benefitting patients with cystic fibrosis.

New biomaterial coats tricky burn wounds by acting like cling wrap

August 11, 2014 12:33 pm | News | Comments

Wrapping wound dressings around fingers and toes can be tricky, but for burn victims, guarding them against infection is critical. At the National Meeting & Exposition of the American Chemical Society scientists have reported the development of new ultra-thin coatings called nanosheets that can cling to the body's contours and keep bacteria at bay. The super-thin sheets have been tested on mice and could help transform burn treatment.

Team determines structure of a molecular machine that targets viral DNA for destruction

August 7, 2014 5:01 pm | News | Comments

Recent research has made a significant contribution to the understanding of a new field of DNA research that is based on a repetitive piece of DNA in the bacterial genome called a CRISPR. The study provides the first detailed blueprint for this multi-subunit “molecular machinery” that bacteria use to detect and destroy invading viruses.

Fundamental plant chemicals trace back to bacteria

August 7, 2014 4:55 pm | News | Comments

A fundamental chemical pathway that all plants use to create an essential amino acid needed by all animals to make proteins has now been traced to two groups of ancient bacteria. The pathway is also known for making hundreds of chemicals, including a compound that makes wood strong and the pigments that make red wine red.

Artificial retina: Physicists develop an interface to the optical nerve

August 7, 2014 9:49 am | News | Comments

Graphene has excellent biocompatibility thanks to its great flexibility and chemical durability, and its conducting properties suggest uses for prosthetic devices in humans. Physicists are now developing key components of an artificial retina made of graphene. These retina implants may one day serve as optical prostheses for blind people whose optical nerves are still intact.

New handheld device uses lasers, sound for melanoma imaging

August 7, 2014 9:39 am | News | Comments

Melanoma is the fifth most common cancer type in the United States. A new handheld device may help diagnosis and treatment efforts for the disease. It uses lasers and sound waves and is the first that can be used directly on a patient to accurately measure how deep a melanoma tumor extends into the skin.

Brain tumors fly under the body's radar like stealth jets

August 7, 2014 8:43 am | News | Comments

Brain tumors fly under the radar of the body’s defense forces by coating their cells with extra amounts of a specific protein, new research at the Univ. of Michigan shows. The findings, made in mice and rats, show the key role of a protein called galectin-1 in some of the most dangerous brain tumors, called high grade malignant gliomas. The stealth approach lets the tumors hide until it’s too late for the body to defeat them.

New material structures bend like microscopic hair

August 6, 2014 10:31 am | by Jennifer Chu, MIT News Office | Videos | Comments

MIT engineers have fabricated a new elastic material coated with microscopic, hairlike structures that tilt in response to a magnetic field. Depending on the field’s orientation, the microhairs can tilt to form a path through which fluid can flow; the material can even direct water upward, against gravity. Researchers say structures may be used in windows to wick away moisture.

Scientists create remote-controlled nanoscale protein motors

August 6, 2014 9:58 am | by Shara Tonn, Stanford Univ. | News | Comments

To help them further the study of cell function, a team of Stanford Univ. bioengineers has designed a suite of protein motors that can be controlled remotely by light. Splicing together DNA from different organisms such as pig, slime mold and oat, which has a light-detecting module, the team created DNA codes for each of their protein motors. When exposed to light, the new protein motors change direction or speed.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading